Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pr2eldif1 | |- ( { A , B } ~~ 2o -> A e. ( { A , B } \ { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pren2 | |- ( { A , B } ~~ 2o <-> ( A e. _V /\ B e. _V /\ A =/= B ) ) |
|
| 2 | prid1g | |- ( A e. _V -> A e. { A , B } ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( A e. _V /\ B e. _V /\ A =/= B ) -> A e. { A , B } ) |
| 4 | nelsn | |- ( A =/= B -> -. A e. { B } ) |
|
| 5 | 4 | 3ad2ant3 | |- ( ( A e. _V /\ B e. _V /\ A =/= B ) -> -. A e. { B } ) |
| 6 | 3 5 | eldifd | |- ( ( A e. _V /\ B e. _V /\ A =/= B ) -> A e. ( { A , B } \ { B } ) ) |
| 7 | 1 6 | sylbi | |- ( { A , B } ~~ 2o -> A e. ( { A , B } \ { B } ) ) |