Metamath Proof Explorer


Theorem pr2eldif1

Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023)

Ref Expression
Assertion pr2eldif1
|- ( { A , B } ~~ 2o -> A e. ( { A , B } \ { B } ) )

Proof

Step Hyp Ref Expression
1 pren2
 |-  ( { A , B } ~~ 2o <-> ( A e. _V /\ B e. _V /\ A =/= B ) )
2 prid1g
 |-  ( A e. _V -> A e. { A , B } )
3 2 3ad2ant1
 |-  ( ( A e. _V /\ B e. _V /\ A =/= B ) -> A e. { A , B } )
4 nelsn
 |-  ( A =/= B -> -. A e. { B } )
5 4 3ad2ant3
 |-  ( ( A e. _V /\ B e. _V /\ A =/= B ) -> -. A e. { B } )
6 3 5 eldifd
 |-  ( ( A e. _V /\ B e. _V /\ A =/= B ) -> A e. ( { A , B } \ { B } ) )
7 1 6 sylbi
 |-  ( { A , B } ~~ 2o -> A e. ( { A , B } \ { B } ) )