Metamath Proof Explorer


Theorem pr2el2

Description: If an unordered pair is equinumerous to ordinal two, then a part is a member. (Contributed by RP, 21-Oct-2023)

Ref Expression
Assertion pr2el2 ( { 𝐴 , 𝐵 } ≈ 2o𝐵 ∈ { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 pr2cv ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
2 prid2g ( 𝐵 ∈ V → 𝐵 ∈ { 𝐴 , 𝐵 } )
3 1 2 simpl2im ( { 𝐴 , 𝐵 } ≈ 2o𝐵 ∈ { 𝐴 , 𝐵 } )