| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsbas.p |
⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdsbas.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 3 |
|
prdsbas.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
| 4 |
|
prdsbas.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 5 |
|
prdsbas.i |
⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
| 6 |
|
prdsds.l |
⊢ 𝐷 = ( dist ‘ 𝑃 ) |
| 7 |
|
eqid |
⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 8 |
|
xrltso |
⊢ < Or ℝ* |
| 9 |
8
|
supex |
⊢ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ V |
| 10 |
7 9
|
fnmpoi |
⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) Fn ( 𝐵 × 𝐵 ) |
| 11 |
1 2 3 4 5 6
|
prdsds |
⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 12 |
11
|
fneq1d |
⊢ ( 𝜑 → ( 𝐷 Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) Fn ( 𝐵 × 𝐵 ) ) ) |
| 13 |
10 12
|
mpbiri |
⊢ ( 𝜑 → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |