Metamath Proof Explorer


Theorem prdsdsfn

Description: Structure product distance function. (Contributed by Mario Carneiro, 15-Sep-2015)

Ref Expression
Hypotheses prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
prdsbas.s ( 𝜑𝑆𝑉 )
prdsbas.r ( 𝜑𝑅𝑊 )
prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
prdsds.l 𝐷 = ( dist ‘ 𝑃 )
Assertion prdsdsfn ( 𝜑𝐷 Fn ( 𝐵 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
2 prdsbas.s ( 𝜑𝑆𝑉 )
3 prdsbas.r ( 𝜑𝑅𝑊 )
4 prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
5 prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
6 prdsds.l 𝐷 = ( dist ‘ 𝑃 )
7 eqid ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) )
8 xrltso < Or ℝ*
9 8 supex sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ V
10 7 9 fnmpoi ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) Fn ( 𝐵 × 𝐵 )
11 1 2 3 4 5 6 prdsds ( 𝜑𝐷 = ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) )
12 11 fneq1d ( 𝜑 → ( 𝐷 Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) Fn ( 𝐵 × 𝐵 ) ) )
13 10 12 mpbiri ( 𝜑𝐷 Fn ( 𝐵 × 𝐵 ) )