| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsbas.p |
|- P = ( S Xs_ R ) |
| 2 |
|
prdsbas.s |
|- ( ph -> S e. V ) |
| 3 |
|
prdsbas.r |
|- ( ph -> R e. W ) |
| 4 |
|
prdsbas.b |
|- B = ( Base ` P ) |
| 5 |
|
prdsbas.i |
|- ( ph -> dom R = I ) |
| 6 |
|
prdsds.l |
|- D = ( dist ` P ) |
| 7 |
|
eqid |
|- ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 8 |
|
xrltso |
|- < Or RR* |
| 9 |
8
|
supex |
|- sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) e. _V |
| 10 |
7 9
|
fnmpoi |
|- ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) Fn ( B X. B ) |
| 11 |
1 2 3 4 5 6
|
prdsds |
|- ( ph -> D = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
| 12 |
11
|
fneq1d |
|- ( ph -> ( D Fn ( B X. B ) <-> ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) Fn ( B X. B ) ) ) |
| 13 |
10 12
|
mpbiri |
|- ( ph -> D Fn ( B X. B ) ) |