Metamath Proof Explorer


Theorem prdsless

Description: Closure of the order relation on a structure product. (Contributed by Mario Carneiro, 16-Aug-2015)

Ref Expression
Hypotheses prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
prdsbas.s ( 𝜑𝑆𝑉 )
prdsbas.r ( 𝜑𝑅𝑊 )
prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
prdsle.l = ( le ‘ 𝑃 )
Assertion prdsless ( 𝜑 ⊆ ( 𝐵 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
2 prdsbas.s ( 𝜑𝑆𝑉 )
3 prdsbas.r ( 𝜑𝑅𝑊 )
4 prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
5 prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
6 prdsle.l = ( le ‘ 𝑃 )
7 1 2 3 4 5 6 prdsle ( 𝜑 = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } )
8 vex 𝑓 ∈ V
9 vex 𝑔 ∈ V
10 8 9 prss ( ( 𝑓𝐵𝑔𝐵 ) ↔ { 𝑓 , 𝑔 } ⊆ 𝐵 )
11 10 anbi1i ( ( ( 𝑓𝐵𝑔𝐵 ) ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ↔ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) )
12 11 opabbii { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓𝐵𝑔𝐵 ) ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) }
13 opabssxp { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓𝐵𝑔𝐵 ) ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } ⊆ ( 𝐵 × 𝐵 )
14 12 13 eqsstrri { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } ⊆ ( 𝐵 × 𝐵 )
15 7 14 eqsstrdi ( 𝜑 ⊆ ( 𝐵 × 𝐵 ) )