| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsbas.p |
⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdsbas.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 3 |
|
prdsbas.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
| 4 |
|
prdsbas.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 5 |
|
prdsbas.i |
⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
| 6 |
|
prdsle.l |
⊢ ≤ = ( le ‘ 𝑃 ) |
| 7 |
1 2 3 4 5 6
|
prdsle |
⊢ ( 𝜑 → ≤ = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 8 |
|
vex |
⊢ 𝑓 ∈ V |
| 9 |
|
vex |
⊢ 𝑔 ∈ V |
| 10 |
8 9
|
prss |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ↔ { 𝑓 , 𝑔 } ⊆ 𝐵 ) |
| 11 |
10
|
anbi1i |
⊢ ( ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ↔ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 12 |
11
|
opabbii |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } |
| 13 |
|
opabssxp |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ⊆ ( 𝐵 × 𝐵 ) |
| 14 |
12 13
|
eqsstrri |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ⊆ ( 𝐵 × 𝐵 ) |
| 15 |
7 14
|
eqsstrdi |
⊢ ( 𝜑 → ≤ ⊆ ( 𝐵 × 𝐵 ) ) |