Metamath Proof Explorer


Theorem predrelss

Description: Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024)

Ref Expression
Assertion predrelss ( 𝑅𝑆 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑆 , 𝐴 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cnvss ( 𝑅𝑆 𝑅 𝑆 )
2 imass1 ( 𝑅 𝑆 → ( 𝑅 “ { 𝑋 } ) ⊆ ( 𝑆 “ { 𝑋 } ) )
3 sslin ( ( 𝑅 “ { 𝑋 } ) ⊆ ( 𝑆 “ { 𝑋 } ) → ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) ⊆ ( 𝐴 ∩ ( 𝑆 “ { 𝑋 } ) ) )
4 1 2 3 3syl ( 𝑅𝑆 → ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) ⊆ ( 𝐴 ∩ ( 𝑆 “ { 𝑋 } ) ) )
5 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
6 df-pred Pred ( 𝑆 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑆 “ { 𝑋 } ) )
7 4 5 6 3sstr4g ( 𝑅𝑆 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑆 , 𝐴 , 𝑋 ) )