Description: Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | predrelss | ⊢ ( 𝑅 ⊆ 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑆 , 𝐴 , 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss | ⊢ ( 𝑅 ⊆ 𝑆 → ◡ 𝑅 ⊆ ◡ 𝑆 ) | |
2 | imass1 | ⊢ ( ◡ 𝑅 ⊆ ◡ 𝑆 → ( ◡ 𝑅 “ { 𝑋 } ) ⊆ ( ◡ 𝑆 “ { 𝑋 } ) ) | |
3 | sslin | ⊢ ( ( ◡ 𝑅 “ { 𝑋 } ) ⊆ ( ◡ 𝑆 “ { 𝑋 } ) → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ⊆ ( 𝐴 ∩ ( ◡ 𝑆 “ { 𝑋 } ) ) ) | |
4 | 1 2 3 | 3syl | ⊢ ( 𝑅 ⊆ 𝑆 → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ⊆ ( 𝐴 ∩ ( ◡ 𝑆 “ { 𝑋 } ) ) ) |
5 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
6 | df-pred | ⊢ Pred ( 𝑆 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑆 “ { 𝑋 } ) ) | |
7 | 4 5 6 | 3sstr4g | ⊢ ( 𝑅 ⊆ 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑆 , 𝐴 , 𝑋 ) ) |