| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmuz2 | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 2 | 1 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑝  ≤  𝑁  ∧  𝑝  ∥  𝐼  ∧  𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 ) ) )  →  𝑝  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑞  =  𝑝  →  ( 𝑞  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ↔  𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 ) ) ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑞  =  𝑝  →  ( 𝑞  ∥  𝐼  ↔  𝑝  ∥  𝐼 ) ) | 
						
							| 5 | 3 4 | anbi12d | ⊢ ( 𝑞  =  𝑝  →  ( ( 𝑞  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∧  𝑞  ∥  𝐼 )  ↔  ( 𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∧  𝑝  ∥  𝐼 ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑝  ≤  𝑁  ∧  𝑝  ∥  𝐼  ∧  𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 ) ) )  ∧  𝑞  =  𝑝 )  →  ( ( 𝑞  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∧  𝑞  ∥  𝐼 )  ↔  ( 𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∧  𝑝  ∥  𝐼 ) ) ) | 
						
							| 7 |  | pm3.22 | ⊢ ( ( 𝑝  ∥  𝐼  ∧  𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 ) )  →  ( 𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∧  𝑝  ∥  𝐼 ) ) | 
						
							| 8 | 7 | 3adant1 | ⊢ ( ( 𝑝  ≤  𝑁  ∧  𝑝  ∥  𝐼  ∧  𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 ) )  →  ( 𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∧  𝑝  ∥  𝐼 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑝  ≤  𝑁  ∧  𝑝  ∥  𝐼  ∧  𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 ) ) )  →  ( 𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∧  𝑝  ∥  𝐼 ) ) | 
						
							| 10 | 2 6 9 | rspcedvd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑝  ≤  𝑁  ∧  𝑝  ∥  𝐼  ∧  𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 ) ) )  →  ∃ 𝑞  ∈  ( ℤ≥ ‘ 2 ) ( 𝑞  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∧  𝑞  ∥  𝐼 ) ) | 
						
							| 11 |  | prmdvdsprmop | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ∃ 𝑝  ∈  ℙ ( 𝑝  ≤  𝑁  ∧  𝑝  ∥  𝐼  ∧  𝑝  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 ) ) ) | 
						
							| 12 | 10 11 | r19.29a | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ∃ 𝑞  ∈  ( ℤ≥ ‘ 2 ) ( 𝑞  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∧  𝑞  ∥  𝐼 ) ) | 
						
							| 13 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 14 |  | prmocl | ⊢ ( 𝑁  ∈  ℕ0  →  ( #p ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( #p ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 16 |  | elfzuz | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 17 |  | eluz2nn | ⊢ ( 𝐼  ∈  ( ℤ≥ ‘ 2 )  →  𝐼  ∈  ℕ ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ℕ ) | 
						
							| 19 |  | nnaddcl | ⊢ ( ( ( #p ‘ 𝑁 )  ∈  ℕ  ∧  𝐼  ∈  ℕ )  →  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∈  ℕ ) | 
						
							| 20 | 15 18 19 | syl2an | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∈  ℕ ) | 
						
							| 21 | 18 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∈  ℕ ) | 
						
							| 22 |  | ncoprmgcdgt1b | ⊢ ( ( ( ( #p ‘ 𝑁 )  +  𝐼 )  ∈  ℕ  ∧  𝐼  ∈  ℕ )  →  ( ∃ 𝑞  ∈  ( ℤ≥ ‘ 2 ) ( 𝑞  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∧  𝑞  ∥  𝐼 )  ↔  1  <  ( ( ( #p ‘ 𝑁 )  +  𝐼 )  gcd  𝐼 ) ) ) | 
						
							| 23 | 20 21 22 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ( ∃ 𝑞  ∈  ( ℤ≥ ‘ 2 ) ( 𝑞  ∥  ( ( #p ‘ 𝑁 )  +  𝐼 )  ∧  𝑞  ∥  𝐼 )  ↔  1  <  ( ( ( #p ‘ 𝑁 )  +  𝐼 )  gcd  𝐼 ) ) ) | 
						
							| 24 | 12 23 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  1  <  ( ( ( #p ‘ 𝑁 )  +  𝐼 )  gcd  𝐼 ) ) |