Step |
Hyp |
Ref |
Expression |
1 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
2 |
1
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
|
breq1 |
⊢ ( 𝑞 = 𝑝 → ( 𝑞 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ↔ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) ) |
4 |
|
breq1 |
⊢ ( 𝑞 = 𝑝 → ( 𝑞 ∥ 𝐼 ↔ 𝑝 ∥ 𝐼 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑞 = 𝑝 → ( ( 𝑞 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ∧ 𝑞 ∥ 𝐼 ) ↔ ( 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ∧ 𝑝 ∥ 𝐼 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) ) ∧ 𝑞 = 𝑝 ) → ( ( 𝑞 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ∧ 𝑞 ∥ 𝐼 ) ↔ ( 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ∧ 𝑝 ∥ 𝐼 ) ) ) |
7 |
|
pm3.22 |
⊢ ( ( 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) → ( 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ∧ 𝑝 ∥ 𝐼 ) ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) → ( 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ∧ 𝑝 ∥ 𝐼 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) ) → ( 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ∧ 𝑝 ∥ 𝐼 ) ) |
10 |
2 6 9
|
rspcedvd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) ) → ∃ 𝑞 ∈ ( ℤ≥ ‘ 2 ) ( 𝑞 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ∧ 𝑞 ∥ 𝐼 ) ) |
11 |
|
prmdvdsprmop |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) ) |
12 |
10 11
|
r19.29a |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑞 ∈ ( ℤ≥ ‘ 2 ) ( 𝑞 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ∧ 𝑞 ∥ 𝐼 ) ) |
13 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
14 |
|
prmocl |
⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ∈ ℕ ) |
15 |
13 14
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( #p ‘ 𝑁 ) ∈ ℕ ) |
16 |
|
elfzuz |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) |
17 |
|
eluz2nn |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 2 ) → 𝐼 ∈ ℕ ) |
18 |
16 17
|
syl |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℕ ) |
19 |
|
nnaddcl |
⊢ ( ( ( #p ‘ 𝑁 ) ∈ ℕ ∧ 𝐼 ∈ ℕ ) → ( ( #p ‘ 𝑁 ) + 𝐼 ) ∈ ℕ ) |
20 |
15 18 19
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ( #p ‘ 𝑁 ) + 𝐼 ) ∈ ℕ ) |
21 |
18
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ℕ ) |
22 |
|
ncoprmgcdgt1b |
⊢ ( ( ( ( #p ‘ 𝑁 ) + 𝐼 ) ∈ ℕ ∧ 𝐼 ∈ ℕ ) → ( ∃ 𝑞 ∈ ( ℤ≥ ‘ 2 ) ( 𝑞 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ∧ 𝑞 ∥ 𝐼 ) ↔ 1 < ( ( ( #p ‘ 𝑁 ) + 𝐼 ) gcd 𝐼 ) ) ) |
23 |
20 21 22
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ∃ 𝑞 ∈ ( ℤ≥ ‘ 2 ) ( 𝑞 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ∧ 𝑞 ∥ 𝐼 ) ↔ 1 < ( ( ( #p ‘ 𝑁 ) + 𝐼 ) gcd 𝐼 ) ) ) |
24 |
12 23
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 1 < ( ( ( #p ‘ 𝑁 ) + 𝐼 ) gcd 𝐼 ) ) |