| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmuz2 |  |-  ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) | 
						
							| 2 | 1 | ad2antlr |  |-  ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) -> p e. ( ZZ>= ` 2 ) ) | 
						
							| 3 |  | breq1 |  |-  ( q = p -> ( q || ( ( #p ` N ) + I ) <-> p || ( ( #p ` N ) + I ) ) ) | 
						
							| 4 |  | breq1 |  |-  ( q = p -> ( q || I <-> p || I ) ) | 
						
							| 5 | 3 4 | anbi12d |  |-  ( q = p -> ( ( q || ( ( #p ` N ) + I ) /\ q || I ) <-> ( p || ( ( #p ` N ) + I ) /\ p || I ) ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) /\ q = p ) -> ( ( q || ( ( #p ` N ) + I ) /\ q || I ) <-> ( p || ( ( #p ` N ) + I ) /\ p || I ) ) ) | 
						
							| 7 |  | pm3.22 |  |-  ( ( p || I /\ p || ( ( #p ` N ) + I ) ) -> ( p || ( ( #p ` N ) + I ) /\ p || I ) ) | 
						
							| 8 | 7 | 3adant1 |  |-  ( ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) -> ( p || ( ( #p ` N ) + I ) /\ p || I ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) -> ( p || ( ( #p ` N ) + I ) /\ p || I ) ) | 
						
							| 10 | 2 6 9 | rspcedvd |  |-  ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) -> E. q e. ( ZZ>= ` 2 ) ( q || ( ( #p ` N ) + I ) /\ q || I ) ) | 
						
							| 11 |  | prmdvdsprmop |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. p e. Prime ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) | 
						
							| 12 | 10 11 | r19.29a |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. q e. ( ZZ>= ` 2 ) ( q || ( ( #p ` N ) + I ) /\ q || I ) ) | 
						
							| 13 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 14 |  | prmocl |  |-  ( N e. NN0 -> ( #p ` N ) e. NN ) | 
						
							| 15 | 13 14 | syl |  |-  ( N e. NN -> ( #p ` N ) e. NN ) | 
						
							| 16 |  | elfzuz |  |-  ( I e. ( 2 ... N ) -> I e. ( ZZ>= ` 2 ) ) | 
						
							| 17 |  | eluz2nn |  |-  ( I e. ( ZZ>= ` 2 ) -> I e. NN ) | 
						
							| 18 | 16 17 | syl |  |-  ( I e. ( 2 ... N ) -> I e. NN ) | 
						
							| 19 |  | nnaddcl |  |-  ( ( ( #p ` N ) e. NN /\ I e. NN ) -> ( ( #p ` N ) + I ) e. NN ) | 
						
							| 20 | 15 18 19 | syl2an |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ( #p ` N ) + I ) e. NN ) | 
						
							| 21 | 18 | adantl |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. NN ) | 
						
							| 22 |  | ncoprmgcdgt1b |  |-  ( ( ( ( #p ` N ) + I ) e. NN /\ I e. NN ) -> ( E. q e. ( ZZ>= ` 2 ) ( q || ( ( #p ` N ) + I ) /\ q || I ) <-> 1 < ( ( ( #p ` N ) + I ) gcd I ) ) ) | 
						
							| 23 | 20 21 22 | syl2anc |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( E. q e. ( ZZ>= ` 2 ) ( q || ( ( #p ` N ) + I ) /\ q || I ) <-> 1 < ( ( ( #p ` N ) + I ) gcd I ) ) ) | 
						
							| 24 | 12 23 | mpbid |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> 1 < ( ( ( #p ` N ) + I ) gcd I ) ) |