Step |
Hyp |
Ref |
Expression |
1 |
|
prmuz2 |
|- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
2 |
1
|
ad2antlr |
|- ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) -> p e. ( ZZ>= ` 2 ) ) |
3 |
|
breq1 |
|- ( q = p -> ( q || ( ( #p ` N ) + I ) <-> p || ( ( #p ` N ) + I ) ) ) |
4 |
|
breq1 |
|- ( q = p -> ( q || I <-> p || I ) ) |
5 |
3 4
|
anbi12d |
|- ( q = p -> ( ( q || ( ( #p ` N ) + I ) /\ q || I ) <-> ( p || ( ( #p ` N ) + I ) /\ p || I ) ) ) |
6 |
5
|
adantl |
|- ( ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) /\ q = p ) -> ( ( q || ( ( #p ` N ) + I ) /\ q || I ) <-> ( p || ( ( #p ` N ) + I ) /\ p || I ) ) ) |
7 |
|
pm3.22 |
|- ( ( p || I /\ p || ( ( #p ` N ) + I ) ) -> ( p || ( ( #p ` N ) + I ) /\ p || I ) ) |
8 |
7
|
3adant1 |
|- ( ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) -> ( p || ( ( #p ` N ) + I ) /\ p || I ) ) |
9 |
8
|
adantl |
|- ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) -> ( p || ( ( #p ` N ) + I ) /\ p || I ) ) |
10 |
2 6 9
|
rspcedvd |
|- ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) -> E. q e. ( ZZ>= ` 2 ) ( q || ( ( #p ` N ) + I ) /\ q || I ) ) |
11 |
|
prmdvdsprmop |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. p e. Prime ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) |
12 |
10 11
|
r19.29a |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. q e. ( ZZ>= ` 2 ) ( q || ( ( #p ` N ) + I ) /\ q || I ) ) |
13 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
14 |
|
prmocl |
|- ( N e. NN0 -> ( #p ` N ) e. NN ) |
15 |
13 14
|
syl |
|- ( N e. NN -> ( #p ` N ) e. NN ) |
16 |
|
elfzuz |
|- ( I e. ( 2 ... N ) -> I e. ( ZZ>= ` 2 ) ) |
17 |
|
eluz2nn |
|- ( I e. ( ZZ>= ` 2 ) -> I e. NN ) |
18 |
16 17
|
syl |
|- ( I e. ( 2 ... N ) -> I e. NN ) |
19 |
|
nnaddcl |
|- ( ( ( #p ` N ) e. NN /\ I e. NN ) -> ( ( #p ` N ) + I ) e. NN ) |
20 |
15 18 19
|
syl2an |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ( #p ` N ) + I ) e. NN ) |
21 |
18
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. NN ) |
22 |
|
ncoprmgcdgt1b |
|- ( ( ( ( #p ` N ) + I ) e. NN /\ I e. NN ) -> ( E. q e. ( ZZ>= ` 2 ) ( q || ( ( #p ` N ) + I ) /\ q || I ) <-> 1 < ( ( ( #p ` N ) + I ) gcd I ) ) ) |
23 |
20 21 22
|
syl2anc |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( E. q e. ( ZZ>= ` 2 ) ( q || ( ( #p ` N ) + I ) /\ q || I ) <-> 1 < ( ( ( #p ` N ) + I ) gcd I ) ) ) |
24 |
12 23
|
mpbid |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> 1 < ( ( ( #p ` N ) + I ) gcd I ) ) |