Metamath Proof Explorer


Theorem prmgapprmolem

Description: Lemma for prmgapprmo : The primorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 15-Aug-2020) (Revised by AV, 29-Aug-2020)

Ref Expression
Assertion prmgapprmolem N I 2 N 1 < # p N + I gcd I

Proof

Step Hyp Ref Expression
1 prmuz2 p p 2
2 1 ad2antlr N I 2 N p p N p I p # p N + I p 2
3 breq1 q = p q # p N + I p # p N + I
4 breq1 q = p q I p I
5 3 4 anbi12d q = p q # p N + I q I p # p N + I p I
6 5 adantl N I 2 N p p N p I p # p N + I q = p q # p N + I q I p # p N + I p I
7 pm3.22 p I p # p N + I p # p N + I p I
8 7 3adant1 p N p I p # p N + I p # p N + I p I
9 8 adantl N I 2 N p p N p I p # p N + I p # p N + I p I
10 2 6 9 rspcedvd N I 2 N p p N p I p # p N + I q 2 q # p N + I q I
11 prmdvdsprmop N I 2 N p p N p I p # p N + I
12 10 11 r19.29a N I 2 N q 2 q # p N + I q I
13 nnnn0 N N 0
14 prmocl N 0 # p N
15 13 14 syl N # p N
16 elfzuz I 2 N I 2
17 eluz2nn I 2 I
18 16 17 syl I 2 N I
19 nnaddcl # p N I # p N + I
20 15 18 19 syl2an N I 2 N # p N + I
21 18 adantl N I 2 N I
22 ncoprmgcdgt1b # p N + I I q 2 q # p N + I q I 1 < # p N + I gcd I
23 20 21 22 syl2anc N I 2 N q 2 q # p N + I q I 1 < # p N + I gcd I
24 12 23 mpbid N I 2 N 1 < # p N + I gcd I