Metamath Proof Explorer


Theorem psrbagfsuppOLD

Description: Obsolete version of psrbagfsupp as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis psrbag.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
Assertion psrbagfsuppOLD ( ( 𝑋𝐷𝐼𝑉 ) → 𝑋 finSupp 0 )

Proof

Step Hyp Ref Expression
1 psrbag.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
2 1 psrbag ( 𝐼𝑉 → ( 𝑋𝐷 ↔ ( 𝑋 : 𝐼 ⟶ ℕ0 ∧ ( 𝑋 “ ℕ ) ∈ Fin ) ) )
3 2 biimpac ( ( 𝑋𝐷𝐼𝑉 ) → ( 𝑋 : 𝐼 ⟶ ℕ0 ∧ ( 𝑋 “ ℕ ) ∈ Fin ) )
4 3 simprd ( ( 𝑋𝐷𝐼𝑉 ) → ( 𝑋 “ ℕ ) ∈ Fin )
5 simpr ( ( 𝑋𝐷𝐼𝑉 ) → 𝐼𝑉 )
6 1 psrbagfOLD ( ( 𝐼𝑉𝑋𝐷 ) → 𝑋 : 𝐼 ⟶ ℕ0 )
7 6 ancoms ( ( 𝑋𝐷𝐼𝑉 ) → 𝑋 : 𝐼 ⟶ ℕ0 )
8 frnnn0fsupp ( ( 𝐼𝑉𝑋 : 𝐼 ⟶ ℕ0 ) → ( 𝑋 finSupp 0 ↔ ( 𝑋 “ ℕ ) ∈ Fin ) )
9 5 7 8 syl2anc ( ( 𝑋𝐷𝐼𝑉 ) → ( 𝑋 finSupp 0 ↔ ( 𝑋 “ ℕ ) ∈ Fin ) )
10 4 9 mpbird ( ( 𝑋𝐷𝐼𝑉 ) → 𝑋 finSupp 0 )