Step |
Hyp |
Ref |
Expression |
1 |
|
psrbag.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
2 |
1
|
psrbag |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑋 “ ℕ ) ∈ Fin ) ) ) |
3 |
2
|
biimpac |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉 ) → ( 𝑋 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑋 “ ℕ ) ∈ Fin ) ) |
4 |
3
|
simprd |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉 ) → ( ◡ 𝑋 “ ℕ ) ∈ Fin ) |
5 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) |
6 |
1
|
psrbagfOLD |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐷 ) → 𝑋 : 𝐼 ⟶ ℕ0 ) |
7 |
6
|
ancoms |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉 ) → 𝑋 : 𝐼 ⟶ ℕ0 ) |
8 |
|
frnnn0fsupp |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 : 𝐼 ⟶ ℕ0 ) → ( 𝑋 finSupp 0 ↔ ( ◡ 𝑋 “ ℕ ) ∈ Fin ) ) |
9 |
5 7 8
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉 ) → ( 𝑋 finSupp 0 ↔ ( ◡ 𝑋 “ ℕ ) ∈ Fin ) ) |
10 |
4 9
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉 ) → 𝑋 finSupp 0 ) |