Metamath Proof Explorer


Theorem psrbagfsuppOLD

Description: Obsolete version of psrbagfsupp as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion psrbagfsuppOLD XDIVfinSupp0X

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 1 psrbag IVXDX:I0X-1Fin
3 2 biimpac XDIVX:I0X-1Fin
4 3 simprd XDIVX-1Fin
5 simpr XDIVIV
6 1 psrbagfOLD IVXDX:I0
7 6 ancoms XDIVX:I0
8 fcdmnn0fsupp IVX:I0finSupp0XX-1Fin
9 5 7 8 syl2anc XDIVfinSupp0XX-1Fin
10 4 9 mpbird XDIVfinSupp0X