Metamath Proof Explorer


Theorem fcdmnn0fsupp

Description: A function into NN0 is finitely supported iff its support is finite. (Contributed by AV, 8-Jul-2019)

Ref Expression
Assertion fcdmnn0fsupp IVF:I0finSupp0FF-1Fin

Proof

Step Hyp Ref Expression
1 c0ex 0V
2 ffsuppbi IV0VF:I0finSupp0FF-100Fin
3 1 2 mpan2 IVF:I0finSupp0FF-100Fin
4 3 imp IVF:I0finSupp0FF-100Fin
5 dfn2 =00
6 5 imaeq2i F-1=F-100
7 6 eleq1i F-1FinF-100Fin
8 4 7 bitr4di IVF:I0finSupp0FF-1Fin