Step |
Hyp |
Ref |
Expression |
1 |
|
psrbag.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
2 |
1
|
psrbag |
|- ( I e. V -> ( X e. D <-> ( X : I --> NN0 /\ ( `' X " NN ) e. Fin ) ) ) |
3 |
2
|
biimpac |
|- ( ( X e. D /\ I e. V ) -> ( X : I --> NN0 /\ ( `' X " NN ) e. Fin ) ) |
4 |
3
|
simprd |
|- ( ( X e. D /\ I e. V ) -> ( `' X " NN ) e. Fin ) |
5 |
|
simpr |
|- ( ( X e. D /\ I e. V ) -> I e. V ) |
6 |
1
|
psrbagfOLD |
|- ( ( I e. V /\ X e. D ) -> X : I --> NN0 ) |
7 |
6
|
ancoms |
|- ( ( X e. D /\ I e. V ) -> X : I --> NN0 ) |
8 |
|
frnnn0fsupp |
|- ( ( I e. V /\ X : I --> NN0 ) -> ( X finSupp 0 <-> ( `' X " NN ) e. Fin ) ) |
9 |
5 7 8
|
syl2anc |
|- ( ( X e. D /\ I e. V ) -> ( X finSupp 0 <-> ( `' X " NN ) e. Fin ) ) |
10 |
4 9
|
mpbird |
|- ( ( X e. D /\ I e. V ) -> X finSupp 0 ) |