Metamath Proof Explorer


Theorem psrbagfsuppOLD

Description: Obsolete version of psrbagfsupp as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis psrbag.d
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin }
Assertion psrbagfsuppOLD
|- ( ( X e. D /\ I e. V ) -> X finSupp 0 )

Proof

Step Hyp Ref Expression
1 psrbag.d
 |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin }
2 1 psrbag
 |-  ( I e. V -> ( X e. D <-> ( X : I --> NN0 /\ ( `' X " NN ) e. Fin ) ) )
3 2 biimpac
 |-  ( ( X e. D /\ I e. V ) -> ( X : I --> NN0 /\ ( `' X " NN ) e. Fin ) )
4 3 simprd
 |-  ( ( X e. D /\ I e. V ) -> ( `' X " NN ) e. Fin )
5 simpr
 |-  ( ( X e. D /\ I e. V ) -> I e. V )
6 1 psrbagfOLD
 |-  ( ( I e. V /\ X e. D ) -> X : I --> NN0 )
7 6 ancoms
 |-  ( ( X e. D /\ I e. V ) -> X : I --> NN0 )
8 frnnn0fsupp
 |-  ( ( I e. V /\ X : I --> NN0 ) -> ( X finSupp 0 <-> ( `' X " NN ) e. Fin ) )
9 5 7 8 syl2anc
 |-  ( ( X e. D /\ I e. V ) -> ( X finSupp 0 <-> ( `' X " NN ) e. Fin ) )
10 4 9 mpbird
 |-  ( ( X e. D /\ I e. V ) -> X finSupp 0 )