Metamath Proof Explorer


Theorem snifpsrbag

Description: A bag containing one element is a finite bag. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 8-Jul-2019)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion snifpsrbag IVN0yIify=XN0D

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 simpr IVN0N0
3 0nn0 00
4 3 a1i IVN000
5 2 4 ifcld IVN0ify=XN00
6 5 adantr IVN0yIify=XN00
7 6 fmpttd IVN0yIify=XN0:I0
8 id IVIV
9 c0ex 0V
10 9 a1i IV0V
11 eqid yIify=XN0=yIify=XN0
12 8 10 11 sniffsupp IVfinSupp0yIify=XN0
13 12 adantr IVN0finSupp0yIify=XN0
14 fcdmnn0fsupp IVyIify=XN0:I0finSupp0yIify=XN0yIify=XN0-1Fin
15 14 adantlr IVN0yIify=XN0:I0finSupp0yIify=XN0yIify=XN0-1Fin
16 15 bicomd IVN0yIify=XN0:I0yIify=XN0-1FinfinSupp0yIify=XN0
17 7 16 mpdan IVN0yIify=XN0-1FinfinSupp0yIify=XN0
18 13 17 mpbird IVN0yIify=XN0-1Fin
19 1 psrbag IVyIify=XN0DyIify=XN0:I0yIify=XN0-1Fin
20 19 adantr IVN0yIify=XN0DyIify=XN0:I0yIify=XN0-1Fin
21 7 18 20 mpbir2and IVN0yIify=XN0D