Step |
Hyp |
Ref |
Expression |
1 |
|
psrbag.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
2 |
|
simp2 |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 : 𝐼 ⟶ ℕ0 ) |
3 |
|
simp1 |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐹 ∈ 𝐷 ) |
4 |
|
id |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷 ) |
5 |
1
|
psrbagf |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
6 |
5
|
ffnd |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼 ) |
7 |
4 6
|
fndmexd |
⊢ ( 𝐹 ∈ 𝐷 → 𝐼 ∈ V ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐼 ∈ V ) |
9 |
1
|
psrbag |
⊢ ( 𝐼 ∈ V → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) ) |
11 |
3 10
|
mpbid |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
12 |
11
|
simprd |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ◡ 𝐹 “ ℕ ) ∈ Fin ) |
13 |
1
|
psrbaglesupp |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ◡ 𝐺 “ ℕ ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |
14 |
12 13
|
ssfid |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ◡ 𝐺 “ ℕ ) ∈ Fin ) |
15 |
1
|
psrbag |
⊢ ( 𝐼 ∈ V → ( 𝐺 ∈ 𝐷 ↔ ( 𝐺 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐺 “ ℕ ) ∈ Fin ) ) ) |
16 |
8 15
|
syl |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐺 ∈ 𝐷 ↔ ( 𝐺 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐺 “ ℕ ) ∈ Fin ) ) ) |
17 |
2 14 16
|
mpbir2and |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 ∈ 𝐷 ) |