Metamath Proof Explorer


Theorem psrbaglecl

Description: The set of finite bags is downward-closed. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)

Ref Expression
Hypothesis psrbag.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
Assertion psrbaglecl ( ( 𝐹𝐷𝐺 : 𝐼 ⟶ ℕ0𝐺r𝐹 ) → 𝐺𝐷 )

Proof

Step Hyp Ref Expression
1 psrbag.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
2 simp2 ( ( 𝐹𝐷𝐺 : 𝐼 ⟶ ℕ0𝐺r𝐹 ) → 𝐺 : 𝐼 ⟶ ℕ0 )
3 simp1 ( ( 𝐹𝐷𝐺 : 𝐼 ⟶ ℕ0𝐺r𝐹 ) → 𝐹𝐷 )
4 id ( 𝐹𝐷𝐹𝐷 )
5 1 psrbagf ( 𝐹𝐷𝐹 : 𝐼 ⟶ ℕ0 )
6 5 ffnd ( 𝐹𝐷𝐹 Fn 𝐼 )
7 4 6 fndmexd ( 𝐹𝐷𝐼 ∈ V )
8 7 3ad2ant1 ( ( 𝐹𝐷𝐺 : 𝐼 ⟶ ℕ0𝐺r𝐹 ) → 𝐼 ∈ V )
9 1 psrbag ( 𝐼 ∈ V → ( 𝐹𝐷 ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( 𝐹 “ ℕ ) ∈ Fin ) ) )
10 8 9 syl ( ( 𝐹𝐷𝐺 : 𝐼 ⟶ ℕ0𝐺r𝐹 ) → ( 𝐹𝐷 ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( 𝐹 “ ℕ ) ∈ Fin ) ) )
11 3 10 mpbid ( ( 𝐹𝐷𝐺 : 𝐼 ⟶ ℕ0𝐺r𝐹 ) → ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( 𝐹 “ ℕ ) ∈ Fin ) )
12 11 simprd ( ( 𝐹𝐷𝐺 : 𝐼 ⟶ ℕ0𝐺r𝐹 ) → ( 𝐹 “ ℕ ) ∈ Fin )
13 1 psrbaglesupp ( ( 𝐹𝐷𝐺 : 𝐼 ⟶ ℕ0𝐺r𝐹 ) → ( 𝐺 “ ℕ ) ⊆ ( 𝐹 “ ℕ ) )
14 12 13 ssfid ( ( 𝐹𝐷𝐺 : 𝐼 ⟶ ℕ0𝐺r𝐹 ) → ( 𝐺 “ ℕ ) ∈ Fin )
15 1 psrbag ( 𝐼 ∈ V → ( 𝐺𝐷 ↔ ( 𝐺 : 𝐼 ⟶ ℕ0 ∧ ( 𝐺 “ ℕ ) ∈ Fin ) ) )
16 8 15 syl ( ( 𝐹𝐷𝐺 : 𝐼 ⟶ ℕ0𝐺r𝐹 ) → ( 𝐺𝐷 ↔ ( 𝐺 : 𝐼 ⟶ ℕ0 ∧ ( 𝐺 “ ℕ ) ∈ Fin ) ) )
17 2 14 16 mpbir2and ( ( 𝐹𝐷𝐺 : 𝐼 ⟶ ℕ0𝐺r𝐹 ) → 𝐺𝐷 )