Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of Enderton p. 28. (Contributed by NM, 23-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwun | ⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ 𝒫 ( 𝐴 ∪ 𝐵 ) = ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pwunss | ⊢ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ⊆ 𝒫 ( 𝐴 ∪ 𝐵 ) | |
| 2 | 1 | biantru | ⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ↔ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ⊆ 𝒫 ( 𝐴 ∪ 𝐵 ) ) ) | 
| 3 | pwssun | ⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) | |
| 4 | eqss | ⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) = ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ↔ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ⊆ 𝒫 ( 𝐴 ∪ 𝐵 ) ) ) | |
| 5 | 2 3 4 | 3bitr4i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ 𝒫 ( 𝐴 ∪ 𝐵 ) = ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) |