Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of Enderton p. 28. (Contributed by NM, 23-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | pwun | |- ( ( A C_ B \/ B C_ A ) <-> ~P ( A u. B ) = ( ~P A u. ~P B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwunss | |- ( ~P A u. ~P B ) C_ ~P ( A u. B ) |
|
2 | 1 | biantru | |- ( ~P ( A u. B ) C_ ( ~P A u. ~P B ) <-> ( ~P ( A u. B ) C_ ( ~P A u. ~P B ) /\ ( ~P A u. ~P B ) C_ ~P ( A u. B ) ) ) |
3 | pwssun | |- ( ( A C_ B \/ B C_ A ) <-> ~P ( A u. B ) C_ ( ~P A u. ~P B ) ) |
|
4 | eqss | |- ( ~P ( A u. B ) = ( ~P A u. ~P B ) <-> ( ~P ( A u. B ) C_ ( ~P A u. ~P B ) /\ ( ~P A u. ~P B ) C_ ~P ( A u. B ) ) ) |
|
5 | 2 3 4 | 3bitr4i | |- ( ( A C_ B \/ B C_ A ) <-> ~P ( A u. B ) = ( ~P A u. ~P B ) ) |