Metamath Proof Explorer


Theorem pwun

Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of Enderton p. 28. (Contributed by NM, 23-Nov-2003)

Ref Expression
Assertion pwun
|- ( ( A C_ B \/ B C_ A ) <-> ~P ( A u. B ) = ( ~P A u. ~P B ) )

Proof

Step Hyp Ref Expression
1 pwunss
 |-  ( ~P A u. ~P B ) C_ ~P ( A u. B )
2 1 biantru
 |-  ( ~P ( A u. B ) C_ ( ~P A u. ~P B ) <-> ( ~P ( A u. B ) C_ ( ~P A u. ~P B ) /\ ( ~P A u. ~P B ) C_ ~P ( A u. B ) ) )
3 pwssun
 |-  ( ( A C_ B \/ B C_ A ) <-> ~P ( A u. B ) C_ ( ~P A u. ~P B ) )
4 eqss
 |-  ( ~P ( A u. B ) = ( ~P A u. ~P B ) <-> ( ~P ( A u. B ) C_ ( ~P A u. ~P B ) /\ ( ~P A u. ~P B ) C_ ~P ( A u. B ) ) )
5 2 3 4 3bitr4i
 |-  ( ( A C_ B \/ B C_ A ) <-> ~P ( A u. B ) = ( ~P A u. ~P B ) )