| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssequn2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐴 ) |
| 2 |
|
pweq |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → 𝒫 ( 𝐴 ∪ 𝐵 ) = 𝒫 𝐴 ) |
| 3 |
|
eqimss |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) = 𝒫 𝐴 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ) |
| 5 |
1 4
|
sylbi |
⊢ ( 𝐵 ⊆ 𝐴 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ) |
| 6 |
|
ssequn1 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
| 7 |
|
pweq |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → 𝒫 ( 𝐴 ∪ 𝐵 ) = 𝒫 𝐵 ) |
| 8 |
|
eqimss |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) = 𝒫 𝐵 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) |
| 10 |
6 9
|
sylbi |
⊢ ( 𝐴 ⊆ 𝐵 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) |
| 11 |
5 10
|
orim12i |
⊢ ( ( 𝐵 ⊆ 𝐴 ∨ 𝐴 ⊆ 𝐵 ) → ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ∨ 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) ) |
| 12 |
11
|
orcoms |
⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) → ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ∨ 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) ) |
| 13 |
|
ssun |
⊢ ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ∨ 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) |
| 15 |
|
vex |
⊢ 𝑥 ∈ V |
| 16 |
15
|
snss |
⊢ ( 𝑥 ∈ 𝐴 ↔ { 𝑥 } ⊆ 𝐴 ) |
| 17 |
|
vex |
⊢ 𝑦 ∈ V |
| 18 |
17
|
snss |
⊢ ( 𝑦 ∈ 𝐵 ↔ { 𝑦 } ⊆ 𝐵 ) |
| 19 |
|
unss12 |
⊢ ( ( { 𝑥 } ⊆ 𝐴 ∧ { 𝑦 } ⊆ 𝐵 ) → ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 20 |
16 18 19
|
syl2anb |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 21 |
|
zfpair2 |
⊢ { 𝑥 , 𝑦 } ∈ V |
| 22 |
21
|
elpw |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 23 |
|
df-pr |
⊢ { 𝑥 , 𝑦 } = ( { 𝑥 } ∪ { 𝑦 } ) |
| 24 |
23
|
sseq1i |
⊢ ( { 𝑥 , 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ↔ ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 25 |
22 24
|
bitr2i |
⊢ ( ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ↔ { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 26 |
20 25
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 27 |
|
ssel |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) ) |
| 28 |
26 27
|
syl5 |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) ) |
| 29 |
28
|
expcomd |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) ) ) |
| 30 |
29
|
imp31 |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) |
| 31 |
|
elun |
⊢ ( { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ∨ { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ) ) |
| 32 |
30 31
|
sylib |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ∨ { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ) ) |
| 33 |
21
|
elpw |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ↔ { 𝑥 , 𝑦 } ⊆ 𝐴 ) |
| 34 |
15 17
|
prss |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐴 ) |
| 35 |
33 34
|
bitr4i |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
| 36 |
35
|
simprbi |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 → 𝑦 ∈ 𝐴 ) |
| 37 |
21
|
elpw |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
| 38 |
15 17
|
prss |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
| 39 |
37 38
|
bitr4i |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 40 |
39
|
simplbi |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 → 𝑥 ∈ 𝐵 ) |
| 41 |
36 40
|
orim12i |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ∨ { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ) → ( 𝑦 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
| 42 |
32 41
|
syl |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
| 43 |
42
|
ord |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 44 |
43
|
impancom |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 45 |
44
|
ssrdv |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
| 46 |
45
|
exp31 |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( ¬ 𝑦 ∈ 𝐴 → 𝐴 ⊆ 𝐵 ) ) ) |
| 47 |
|
con1b |
⊢ ( ( ¬ 𝑦 ∈ 𝐴 → 𝐴 ⊆ 𝐵 ) ↔ ( ¬ 𝐴 ⊆ 𝐵 → 𝑦 ∈ 𝐴 ) ) |
| 48 |
46 47
|
imbitrdi |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( ¬ 𝐴 ⊆ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) |
| 49 |
48
|
com23 |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( ¬ 𝐴 ⊆ 𝐵 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) |
| 50 |
49
|
imp |
⊢ ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) |
| 51 |
50
|
ssrdv |
⊢ ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
| 52 |
51
|
ex |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( ¬ 𝐴 ⊆ 𝐵 → 𝐵 ⊆ 𝐴 ) ) |
| 53 |
52
|
orrd |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 54 |
14 53
|
impbii |
⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) |