Step |
Hyp |
Ref |
Expression |
1 |
|
ssequn2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐴 ) |
2 |
|
pweq |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → 𝒫 ( 𝐴 ∪ 𝐵 ) = 𝒫 𝐴 ) |
3 |
|
eqimss |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) = 𝒫 𝐴 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ) |
5 |
1 4
|
sylbi |
⊢ ( 𝐵 ⊆ 𝐴 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ) |
6 |
|
ssequn1 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
7 |
|
pweq |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → 𝒫 ( 𝐴 ∪ 𝐵 ) = 𝒫 𝐵 ) |
8 |
|
eqimss |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) = 𝒫 𝐵 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) |
10 |
6 9
|
sylbi |
⊢ ( 𝐴 ⊆ 𝐵 → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) |
11 |
5 10
|
orim12i |
⊢ ( ( 𝐵 ⊆ 𝐴 ∨ 𝐴 ⊆ 𝐵 ) → ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ∨ 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) ) |
12 |
11
|
orcoms |
⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) → ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ∨ 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) ) |
13 |
|
ssun |
⊢ ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐴 ∨ 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝐵 ) → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) → 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) |
15 |
|
vex |
⊢ 𝑥 ∈ V |
16 |
15
|
snss |
⊢ ( 𝑥 ∈ 𝐴 ↔ { 𝑥 } ⊆ 𝐴 ) |
17 |
|
vex |
⊢ 𝑦 ∈ V |
18 |
17
|
snss |
⊢ ( 𝑦 ∈ 𝐵 ↔ { 𝑦 } ⊆ 𝐵 ) |
19 |
|
unss12 |
⊢ ( ( { 𝑥 } ⊆ 𝐴 ∧ { 𝑦 } ⊆ 𝐵 ) → ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ) |
20 |
16 18 19
|
syl2anb |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ) |
21 |
|
zfpair2 |
⊢ { 𝑥 , 𝑦 } ∈ V |
22 |
21
|
elpw |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
23 |
|
df-pr |
⊢ { 𝑥 , 𝑦 } = ( { 𝑥 } ∪ { 𝑦 } ) |
24 |
23
|
sseq1i |
⊢ ( { 𝑥 , 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ↔ ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ) |
25 |
22 24
|
bitr2i |
⊢ ( ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ↔ { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
26 |
20 25
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
27 |
|
ssel |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) ) |
28 |
26 27
|
syl5 |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) ) |
29 |
28
|
expcomd |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) ) ) |
30 |
29
|
imp31 |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) |
31 |
|
elun |
⊢ ( { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ∨ { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ) ) |
32 |
30 31
|
sylib |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ∨ { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ) ) |
33 |
21
|
elpw |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ↔ { 𝑥 , 𝑦 } ⊆ 𝐴 ) |
34 |
15 17
|
prss |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐴 ) |
35 |
33 34
|
bitr4i |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
36 |
35
|
simprbi |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 → 𝑦 ∈ 𝐴 ) |
37 |
21
|
elpw |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
38 |
15 17
|
prss |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
39 |
37 38
|
bitr4i |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
40 |
39
|
simplbi |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 → 𝑥 ∈ 𝐵 ) |
41 |
36 40
|
orim12i |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ∨ { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ) → ( 𝑦 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
42 |
32 41
|
syl |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
43 |
42
|
ord |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
44 |
43
|
impancom |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
45 |
44
|
ssrdv |
⊢ ( ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
46 |
45
|
exp31 |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( ¬ 𝑦 ∈ 𝐴 → 𝐴 ⊆ 𝐵 ) ) ) |
47 |
|
con1b |
⊢ ( ( ¬ 𝑦 ∈ 𝐴 → 𝐴 ⊆ 𝐵 ) ↔ ( ¬ 𝐴 ⊆ 𝐵 → 𝑦 ∈ 𝐴 ) ) |
48 |
46 47
|
syl6ib |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( ¬ 𝐴 ⊆ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) |
49 |
48
|
com23 |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( ¬ 𝐴 ⊆ 𝐵 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) |
50 |
49
|
imp |
⊢ ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) |
51 |
50
|
ssrdv |
⊢ ( ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
52 |
51
|
ex |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( ¬ 𝐴 ⊆ 𝐵 → 𝐵 ⊆ 𝐴 ) ) |
53 |
52
|
orrd |
⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
54 |
14 53
|
impbii |
⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ 𝒫 ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) |