Metamath Proof Explorer


Theorem pwssun

Description: The power class of the union of two classes is a subset of the union of their power classes, iff one class is a subclass of the other. Exercise 4.12(l) of Mendelson p. 235. (Contributed by NM, 23-Nov-2003)

Ref Expression
Assertion pwssun ( ( 𝐴𝐵𝐵𝐴 ) ↔ 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssequn2 ( 𝐵𝐴 ↔ ( 𝐴𝐵 ) = 𝐴 )
2 pweq ( ( 𝐴𝐵 ) = 𝐴 → 𝒫 ( 𝐴𝐵 ) = 𝒫 𝐴 )
3 eqimss ( 𝒫 ( 𝐴𝐵 ) = 𝒫 𝐴 → 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐴 )
4 2 3 syl ( ( 𝐴𝐵 ) = 𝐴 → 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐴 )
5 1 4 sylbi ( 𝐵𝐴 → 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐴 )
6 ssequn1 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = 𝐵 )
7 pweq ( ( 𝐴𝐵 ) = 𝐵 → 𝒫 ( 𝐴𝐵 ) = 𝒫 𝐵 )
8 eqimss ( 𝒫 ( 𝐴𝐵 ) = 𝒫 𝐵 → 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐵 )
9 7 8 syl ( ( 𝐴𝐵 ) = 𝐵 → 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐵 )
10 6 9 sylbi ( 𝐴𝐵 → 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐵 )
11 5 10 orim12i ( ( 𝐵𝐴𝐴𝐵 ) → ( 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐴 ∨ 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐵 ) )
12 11 orcoms ( ( 𝐴𝐵𝐵𝐴 ) → ( 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐴 ∨ 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐵 ) )
13 ssun ( ( 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐴 ∨ 𝒫 ( 𝐴𝐵 ) ⊆ 𝒫 𝐵 ) → 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) )
14 12 13 syl ( ( 𝐴𝐵𝐵𝐴 ) → 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) )
15 vex 𝑥 ∈ V
16 15 snss ( 𝑥𝐴 ↔ { 𝑥 } ⊆ 𝐴 )
17 vex 𝑦 ∈ V
18 17 snss ( 𝑦𝐵 ↔ { 𝑦 } ⊆ 𝐵 )
19 unss12 ( ( { 𝑥 } ⊆ 𝐴 ∧ { 𝑦 } ⊆ 𝐵 ) → ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴𝐵 ) )
20 16 18 19 syl2anb ( ( 𝑥𝐴𝑦𝐵 ) → ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴𝐵 ) )
21 zfpair2 { 𝑥 , 𝑦 } ∈ V
22 21 elpw ( { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ ( 𝐴𝐵 ) )
23 df-pr { 𝑥 , 𝑦 } = ( { 𝑥 } ∪ { 𝑦 } )
24 23 sseq1i ( { 𝑥 , 𝑦 } ⊆ ( 𝐴𝐵 ) ↔ ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴𝐵 ) )
25 22 24 bitr2i ( ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴𝐵 ) ↔ { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴𝐵 ) )
26 20 25 sylib ( ( 𝑥𝐴𝑦𝐵 ) → { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴𝐵 ) )
27 ssel ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴𝐵 ) → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) )
28 26 27 syl5 ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( ( 𝑥𝐴𝑦𝐵 ) → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) )
29 28 expcomd ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝑦𝐵 → ( 𝑥𝐴 → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ) ) )
30 29 imp31 ( ( ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦𝐵 ) ∧ 𝑥𝐴 ) → { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) )
31 elun ( { 𝑥 , 𝑦 } ∈ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ∨ { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ) )
32 30 31 sylib ( ( ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦𝐵 ) ∧ 𝑥𝐴 ) → ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ∨ { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ) )
33 21 elpw ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ↔ { 𝑥 , 𝑦 } ⊆ 𝐴 )
34 15 17 prss ( ( 𝑥𝐴𝑦𝐴 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐴 )
35 33 34 bitr4i ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ↔ ( 𝑥𝐴𝑦𝐴 ) )
36 35 simprbi ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴𝑦𝐴 )
37 21 elpw ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 )
38 15 17 prss ( ( 𝑥𝐵𝑦𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 )
39 37 38 bitr4i ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ↔ ( 𝑥𝐵𝑦𝐵 ) )
40 39 simplbi ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐵𝑥𝐵 )
41 36 40 orim12i ( ( { 𝑥 , 𝑦 } ∈ 𝒫 𝐴 ∨ { 𝑥 , 𝑦 } ∈ 𝒫 𝐵 ) → ( 𝑦𝐴𝑥𝐵 ) )
42 32 41 syl ( ( ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦𝐵 ) ∧ 𝑥𝐴 ) → ( 𝑦𝐴𝑥𝐵 ) )
43 42 ord ( ( ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦𝐵 ) ∧ 𝑥𝐴 ) → ( ¬ 𝑦𝐴𝑥𝐵 ) )
44 43 impancom ( ( ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦𝐵 ) ∧ ¬ 𝑦𝐴 ) → ( 𝑥𝐴𝑥𝐵 ) )
45 44 ssrdv ( ( ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝑦𝐵 ) ∧ ¬ 𝑦𝐴 ) → 𝐴𝐵 )
46 45 exp31 ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝑦𝐵 → ( ¬ 𝑦𝐴𝐴𝐵 ) ) )
47 con1b ( ( ¬ 𝑦𝐴𝐴𝐵 ) ↔ ( ¬ 𝐴𝐵𝑦𝐴 ) )
48 46 47 syl6ib ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝑦𝐵 → ( ¬ 𝐴𝐵𝑦𝐴 ) ) )
49 48 com23 ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( ¬ 𝐴𝐵 → ( 𝑦𝐵𝑦𝐴 ) ) )
50 49 imp ( ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ ¬ 𝐴𝐵 ) → ( 𝑦𝐵𝑦𝐴 ) )
51 50 ssrdv ( ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ∧ ¬ 𝐴𝐵 ) → 𝐵𝐴 )
52 51 ex ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( ¬ 𝐴𝐵𝐵𝐴 ) )
53 52 orrd ( 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) → ( 𝐴𝐵𝐵𝐴 ) )
54 14 53 impbii ( ( 𝐴𝐵𝐵𝐴 ) ↔ 𝒫 ( 𝐴𝐵 ) ⊆ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) )