| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssequn2 | ⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐴  ∪  𝐵 )  =  𝐴 ) | 
						
							| 2 |  | pweq | ⊢ ( ( 𝐴  ∪  𝐵 )  =  𝐴  →  𝒫  ( 𝐴  ∪  𝐵 )  =  𝒫  𝐴 ) | 
						
							| 3 |  | eqimss | ⊢ ( 𝒫  ( 𝐴  ∪  𝐵 )  =  𝒫  𝐴  →  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐴 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴  ∪  𝐵 )  =  𝐴  →  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐴 ) | 
						
							| 5 | 1 4 | sylbi | ⊢ ( 𝐵  ⊆  𝐴  →  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐴 ) | 
						
							| 6 |  | ssequn1 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∪  𝐵 )  =  𝐵 ) | 
						
							| 7 |  | pweq | ⊢ ( ( 𝐴  ∪  𝐵 )  =  𝐵  →  𝒫  ( 𝐴  ∪  𝐵 )  =  𝒫  𝐵 ) | 
						
							| 8 |  | eqimss | ⊢ ( 𝒫  ( 𝐴  ∪  𝐵 )  =  𝒫  𝐵  →  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐵 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝐴  ∪  𝐵 )  =  𝐵  →  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐵 ) | 
						
							| 10 | 6 9 | sylbi | ⊢ ( 𝐴  ⊆  𝐵  →  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐵 ) | 
						
							| 11 | 5 10 | orim12i | ⊢ ( ( 𝐵  ⊆  𝐴  ∨  𝐴  ⊆  𝐵 )  →  ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐴  ∨  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐵 ) ) | 
						
							| 12 | 11 | orcoms | ⊢ ( ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 )  →  ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐴  ∨  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐵 ) ) | 
						
							| 13 |  | ssun | ⊢ ( ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐴  ∨  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  𝒫  𝐵 )  →  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 )  →  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 ) ) | 
						
							| 15 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 16 | 15 | snss | ⊢ ( 𝑥  ∈  𝐴  ↔  { 𝑥 }  ⊆  𝐴 ) | 
						
							| 17 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 18 | 17 | snss | ⊢ ( 𝑦  ∈  𝐵  ↔  { 𝑦 }  ⊆  𝐵 ) | 
						
							| 19 |  | unss12 | ⊢ ( ( { 𝑥 }  ⊆  𝐴  ∧  { 𝑦 }  ⊆  𝐵 )  →  ( { 𝑥 }  ∪  { 𝑦 } )  ⊆  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 20 | 16 18 19 | syl2anb | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( { 𝑥 }  ∪  { 𝑦 } )  ⊆  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 21 |  | zfpair2 | ⊢ { 𝑥 ,  𝑦 }  ∈  V | 
						
							| 22 | 21 | elpw | ⊢ ( { 𝑥 ,  𝑦 }  ∈  𝒫  ( 𝐴  ∪  𝐵 )  ↔  { 𝑥 ,  𝑦 }  ⊆  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 23 |  | df-pr | ⊢ { 𝑥 ,  𝑦 }  =  ( { 𝑥 }  ∪  { 𝑦 } ) | 
						
							| 24 | 23 | sseq1i | ⊢ ( { 𝑥 ,  𝑦 }  ⊆  ( 𝐴  ∪  𝐵 )  ↔  ( { 𝑥 }  ∪  { 𝑦 } )  ⊆  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 25 | 22 24 | bitr2i | ⊢ ( ( { 𝑥 }  ∪  { 𝑦 } )  ⊆  ( 𝐴  ∪  𝐵 )  ↔  { 𝑥 ,  𝑦 }  ∈  𝒫  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 26 | 20 25 | sylib | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  { 𝑥 ,  𝑦 }  ∈  𝒫  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 27 |  | ssel | ⊢ ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  →  ( { 𝑥 ,  𝑦 }  ∈  𝒫  ( 𝐴  ∪  𝐵 )  →  { 𝑥 ,  𝑦 }  ∈  ( 𝒫  𝐴  ∪  𝒫  𝐵 ) ) ) | 
						
							| 28 | 26 27 | syl5 | ⊢ ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  { 𝑥 ,  𝑦 }  ∈  ( 𝒫  𝐴  ∪  𝒫  𝐵 ) ) ) | 
						
							| 29 | 28 | expcomd | ⊢ ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  →  ( 𝑦  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  { 𝑥 ,  𝑦 }  ∈  ( 𝒫  𝐴  ∪  𝒫  𝐵 ) ) ) ) | 
						
							| 30 | 29 | imp31 | ⊢ ( ( ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  { 𝑥 ,  𝑦 }  ∈  ( 𝒫  𝐴  ∪  𝒫  𝐵 ) ) | 
						
							| 31 |  | elun | ⊢ ( { 𝑥 ,  𝑦 }  ∈  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  ↔  ( { 𝑥 ,  𝑦 }  ∈  𝒫  𝐴  ∨  { 𝑥 ,  𝑦 }  ∈  𝒫  𝐵 ) ) | 
						
							| 32 | 30 31 | sylib | ⊢ ( ( ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( { 𝑥 ,  𝑦 }  ∈  𝒫  𝐴  ∨  { 𝑥 ,  𝑦 }  ∈  𝒫  𝐵 ) ) | 
						
							| 33 | 21 | elpw | ⊢ ( { 𝑥 ,  𝑦 }  ∈  𝒫  𝐴  ↔  { 𝑥 ,  𝑦 }  ⊆  𝐴 ) | 
						
							| 34 | 15 17 | prss | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ↔  { 𝑥 ,  𝑦 }  ⊆  𝐴 ) | 
						
							| 35 | 33 34 | bitr4i | ⊢ ( { 𝑥 ,  𝑦 }  ∈  𝒫  𝐴  ↔  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 36 | 35 | simprbi | ⊢ ( { 𝑥 ,  𝑦 }  ∈  𝒫  𝐴  →  𝑦  ∈  𝐴 ) | 
						
							| 37 | 21 | elpw | ⊢ ( { 𝑥 ,  𝑦 }  ∈  𝒫  𝐵  ↔  { 𝑥 ,  𝑦 }  ⊆  𝐵 ) | 
						
							| 38 | 15 17 | prss | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  { 𝑥 ,  𝑦 }  ⊆  𝐵 ) | 
						
							| 39 | 37 38 | bitr4i | ⊢ ( { 𝑥 ,  𝑦 }  ∈  𝒫  𝐵  ↔  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 40 | 39 | simplbi | ⊢ ( { 𝑥 ,  𝑦 }  ∈  𝒫  𝐵  →  𝑥  ∈  𝐵 ) | 
						
							| 41 | 36 40 | orim12i | ⊢ ( ( { 𝑥 ,  𝑦 }  ∈  𝒫  𝐴  ∨  { 𝑥 ,  𝑦 }  ∈  𝒫  𝐵 )  →  ( 𝑦  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) ) | 
						
							| 42 | 32 41 | syl | ⊢ ( ( ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) ) | 
						
							| 43 | 42 | ord | ⊢ ( ( ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ¬  𝑦  ∈  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 44 | 43 | impancom | ⊢ ( ( ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  ¬  𝑦  ∈  𝐴 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 45 | 44 | ssrdv | ⊢ ( ( ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  ¬  𝑦  ∈  𝐴 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 46 | 45 | exp31 | ⊢ ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  →  ( 𝑦  ∈  𝐵  →  ( ¬  𝑦  ∈  𝐴  →  𝐴  ⊆  𝐵 ) ) ) | 
						
							| 47 |  | con1b | ⊢ ( ( ¬  𝑦  ∈  𝐴  →  𝐴  ⊆  𝐵 )  ↔  ( ¬  𝐴  ⊆  𝐵  →  𝑦  ∈  𝐴 ) ) | 
						
							| 48 | 46 47 | imbitrdi | ⊢ ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  →  ( 𝑦  ∈  𝐵  →  ( ¬  𝐴  ⊆  𝐵  →  𝑦  ∈  𝐴 ) ) ) | 
						
							| 49 | 48 | com23 | ⊢ ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  →  ( ¬  𝐴  ⊆  𝐵  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐴 ) ) ) | 
						
							| 50 | 49 | imp | ⊢ ( ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  ∧  ¬  𝐴  ⊆  𝐵 )  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐴 ) ) | 
						
							| 51 | 50 | ssrdv | ⊢ ( ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  ∧  ¬  𝐴  ⊆  𝐵 )  →  𝐵  ⊆  𝐴 ) | 
						
							| 52 | 51 | ex | ⊢ ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  →  ( ¬  𝐴  ⊆  𝐵  →  𝐵  ⊆  𝐴 ) ) | 
						
							| 53 | 52 | orrd | ⊢ ( 𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 )  →  ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 ) ) | 
						
							| 54 | 14 53 | impbii | ⊢ ( ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 )  ↔  𝒫  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝒫  𝐴  ∪  𝒫  𝐵 ) ) |