Metamath Proof Explorer


Theorem pwundifOLD

Description: Obsolete proof of pwundif as of 26-Dec-2023. (Contributed by NM, 25-Mar-2007) (Proof shortened by Thierry Arnoux, 20-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion pwundifOLD 𝒫 ( 𝐴𝐵 ) = ( ( 𝒫 ( 𝐴𝐵 ) ∖ 𝒫 𝐴 ) ∪ 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 undif1 ( ( 𝒫 ( 𝐴𝐵 ) ∖ 𝒫 𝐴 ) ∪ 𝒫 𝐴 ) = ( 𝒫 ( 𝐴𝐵 ) ∪ 𝒫 𝐴 )
2 pwunss ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ⊆ 𝒫 ( 𝐴𝐵 )
3 unss ( ( 𝒫 𝐴 ⊆ 𝒫 ( 𝐴𝐵 ) ∧ 𝒫 𝐵 ⊆ 𝒫 ( 𝐴𝐵 ) ) ↔ ( 𝒫 𝐴 ∪ 𝒫 𝐵 ) ⊆ 𝒫 ( 𝐴𝐵 ) )
4 2 3 mpbir ( 𝒫 𝐴 ⊆ 𝒫 ( 𝐴𝐵 ) ∧ 𝒫 𝐵 ⊆ 𝒫 ( 𝐴𝐵 ) )
5 4 simpli 𝒫 𝐴 ⊆ 𝒫 ( 𝐴𝐵 )
6 ssequn2 ( 𝒫 𝐴 ⊆ 𝒫 ( 𝐴𝐵 ) ↔ ( 𝒫 ( 𝐴𝐵 ) ∪ 𝒫 𝐴 ) = 𝒫 ( 𝐴𝐵 ) )
7 5 6 mpbi ( 𝒫 ( 𝐴𝐵 ) ∪ 𝒫 𝐴 ) = 𝒫 ( 𝐴𝐵 )
8 1 7 eqtr2i 𝒫 ( 𝐴𝐵 ) = ( ( 𝒫 ( 𝐴𝐵 ) ∖ 𝒫 𝐴 ) ∪ 𝒫 𝐴 )