Metamath Proof Explorer


Theorem qseq12d

Description: Equality theorem for quotient set, deduction form. (Contributed by Steven Nguyen, 30-Apr-2023)

Ref Expression
Hypotheses qseq12d.1 ( 𝜑𝐴 = 𝐵 )
qseq12d.2 ( 𝜑𝐶 = 𝐷 )
Assertion qseq12d ( 𝜑 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) )

Proof

Step Hyp Ref Expression
1 qseq12d.1 ( 𝜑𝐴 = 𝐵 )
2 qseq12d.2 ( 𝜑𝐶 = 𝐷 )
3 qseq12 ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) )