| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 2 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 3 |
1 2
|
sylib |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 4 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ ran 𝐹 → 𝐹 : 𝑋 ⟶ ran 𝐹 ) |
| 5 |
3 4
|
syl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 : 𝑋 ⟶ ran 𝐹 ) |
| 6 |
|
elqtop3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 7 |
3 6
|
syldan |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 8 |
7
|
simplbda |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 9 |
8
|
ralrimiva |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → ∀ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 10 |
|
qtoptopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 11 |
3 10
|
syldan |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 12 |
|
iscn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) → ( 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐹 : 𝑋 ⟶ ran 𝐹 ∧ ∀ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 13 |
11 12
|
syldan |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → ( 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐹 : 𝑋 ⟶ ran 𝐹 ∧ ∀ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 14 |
5 9 13
|
mpbir2and |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |