Step |
Hyp |
Ref |
Expression |
1 |
|
qustgp.h |
⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( TopOpen ‘ 𝐻 ) = ( TopOpen ‘ 𝐻 ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) |
6 |
|
eqid |
⊢ ( 𝑧 ∈ ( Base ‘ 𝐺 ) , 𝑤 ∈ ( Base ‘ 𝐺 ) ↦ [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) ) = ( 𝑧 ∈ ( Base ‘ 𝐺 ) , 𝑤 ∈ ( Base ‘ 𝐺 ) ↦ [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) ) |
7 |
1 2 3 4 5 6
|
qustgplem |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopGrp ) |