Metamath Proof Explorer


Theorem qustgp

Description: The quotient of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis qustgp.h H=G/𝑠G~QGY
Assertion qustgp GTopGrpYNrmSGrpGHTopGrp

Proof

Step Hyp Ref Expression
1 qustgp.h H=G/𝑠G~QGY
2 eqid BaseG=BaseG
3 eqid TopOpenG=TopOpenG
4 eqid TopOpenH=TopOpenH
5 eqid xBaseGxG~QGY=xBaseGxG~QGY
6 eqid zBaseG,wBaseGz-GwG~QGY=zBaseG,wBaseGz-GwG~QGY
7 1 2 3 4 5 6 qustgplem GTopGrpYNrmSGrpGHTopGrp