Metamath Proof Explorer


Theorem qustgphaus

Description: The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses qustgp.h H=G/𝑠G~QGY
qustgphaus.j J=TopOpenG
qustgphaus.k K=TopOpenH
Assertion qustgphaus GTopGrpYNrmSGrpGYClsdJKHaus

Proof

Step Hyp Ref Expression
1 qustgp.h H=G/𝑠G~QGY
2 qustgphaus.j J=TopOpenG
3 qustgphaus.k K=TopOpenH
4 eqid 0G=0G
5 1 4 qus0 YNrmSGrpG0GG~QGY=0H
6 5 3ad2ant2 GTopGrpYNrmSGrpGYClsdJ0GG~QGY=0H
7 tgpgrp GTopGrpGGrp
8 7 3ad2ant1 GTopGrpYNrmSGrpGYClsdJGGrp
9 eqid BaseG=BaseG
10 9 4 grpidcl GGrp0GBaseG
11 8 10 syl GTopGrpYNrmSGrpGYClsdJ0GBaseG
12 ovex G~QGYV
13 12 ecelqsi 0GBaseG0GG~QGYBaseG/G~QGY
14 11 13 syl GTopGrpYNrmSGrpGYClsdJ0GG~QGYBaseG/G~QGY
15 6 14 eqeltrrd GTopGrpYNrmSGrpGYClsdJ0HBaseG/G~QGY
16 15 snssd GTopGrpYNrmSGrpGYClsdJ0HBaseG/G~QGY
17 eqid xBaseGxG~QGY=xBaseGxG~QGY
18 17 mptpreima xBaseGxG~QGY-10H=xBaseG|xG~QGY0H
19 nsgsubg YNrmSGrpGYSubGrpG
20 19 3ad2ant2 GTopGrpYNrmSGrpGYClsdJYSubGrpG
21 eqid G~QGY=G~QGY
22 9 21 4 eqgid YSubGrpG0GG~QGY=Y
23 20 22 syl GTopGrpYNrmSGrpGYClsdJ0GG~QGY=Y
24 9 subgss YSubGrpGYBaseG
25 20 24 syl GTopGrpYNrmSGrpGYClsdJYBaseG
26 23 25 eqsstrd GTopGrpYNrmSGrpGYClsdJ0GG~QGYBaseG
27 sseqin2 0GG~QGYBaseGBaseG0GG~QGY=0GG~QGY
28 26 27 sylib GTopGrpYNrmSGrpGYClsdJBaseG0GG~QGY=0GG~QGY
29 9 21 eqger YSubGrpGG~QGYErBaseG
30 20 29 syl GTopGrpYNrmSGrpGYClsdJG~QGYErBaseG
31 30 11 erth GTopGrpYNrmSGrpGYClsdJ0GG~QGYx0GG~QGY=xG~QGY
32 31 adantr GTopGrpYNrmSGrpGYClsdJxBaseG0GG~QGYx0GG~QGY=xG~QGY
33 6 adantr GTopGrpYNrmSGrpGYClsdJxBaseG0GG~QGY=0H
34 33 eqeq1d GTopGrpYNrmSGrpGYClsdJxBaseG0GG~QGY=xG~QGY0H=xG~QGY
35 32 34 bitrd GTopGrpYNrmSGrpGYClsdJxBaseG0GG~QGYx0H=xG~QGY
36 vex xV
37 fvex 0GV
38 36 37 elec x0GG~QGY0GG~QGYx
39 fvex 0HV
40 39 elsn2 xG~QGY0HxG~QGY=0H
41 eqcom xG~QGY=0H0H=xG~QGY
42 40 41 bitri xG~QGY0H0H=xG~QGY
43 35 38 42 3bitr4g GTopGrpYNrmSGrpGYClsdJxBaseGx0GG~QGYxG~QGY0H
44 43 rabbi2dva GTopGrpYNrmSGrpGYClsdJBaseG0GG~QGY=xBaseG|xG~QGY0H
45 28 44 23 3eqtr3d GTopGrpYNrmSGrpGYClsdJxBaseG|xG~QGY0H=Y
46 18 45 eqtrid GTopGrpYNrmSGrpGYClsdJxBaseGxG~QGY-10H=Y
47 simp3 GTopGrpYNrmSGrpGYClsdJYClsdJ
48 46 47 eqeltrd GTopGrpYNrmSGrpGYClsdJxBaseGxG~QGY-10HClsdJ
49 2 9 tgptopon GTopGrpJTopOnBaseG
50 49 3ad2ant1 GTopGrpYNrmSGrpGYClsdJJTopOnBaseG
51 1 a1i GTopGrpYNrmSGrpGYClsdJH=G/𝑠G~QGY
52 eqidd GTopGrpYNrmSGrpGYClsdJBaseG=BaseG
53 12 a1i GTopGrpYNrmSGrpGYClsdJG~QGYV
54 simp1 GTopGrpYNrmSGrpGYClsdJGTopGrp
55 51 52 17 53 54 quslem GTopGrpYNrmSGrpGYClsdJxBaseGxG~QGY:BaseGontoBaseG/G~QGY
56 qtopcld JTopOnBaseGxBaseGxG~QGY:BaseGontoBaseG/G~QGY0HClsdJqTopxBaseGxG~QGY0HBaseG/G~QGYxBaseGxG~QGY-10HClsdJ
57 50 55 56 syl2anc GTopGrpYNrmSGrpGYClsdJ0HClsdJqTopxBaseGxG~QGY0HBaseG/G~QGYxBaseGxG~QGY-10HClsdJ
58 16 48 57 mpbir2and GTopGrpYNrmSGrpGYClsdJ0HClsdJqTopxBaseGxG~QGY
59 51 52 17 53 54 qusval GTopGrpYNrmSGrpGYClsdJH=xBaseGxG~QGY𝑠G
60 59 52 55 54 2 3 imastopn GTopGrpYNrmSGrpGYClsdJK=JqTopxBaseGxG~QGY
61 60 fveq2d GTopGrpYNrmSGrpGYClsdJClsdK=ClsdJqTopxBaseGxG~QGY
62 58 61 eleqtrrd GTopGrpYNrmSGrpGYClsdJ0HClsdK
63 1 qustgp GTopGrpYNrmSGrpGHTopGrp
64 63 3adant3 GTopGrpYNrmSGrpGYClsdJHTopGrp
65 eqid 0H=0H
66 65 3 tgphaus HTopGrpKHaus0HClsdK
67 64 66 syl GTopGrpYNrmSGrpGYClsdJKHaus0HClsdK
68 62 67 mpbird GTopGrpYNrmSGrpGYClsdJKHaus