Description: The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qustgp.h | |
|
qustgphaus.j | |
||
qustgphaus.k | |
||
Assertion | qustgphaus | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qustgp.h | |
|
2 | qustgphaus.j | |
|
3 | qustgphaus.k | |
|
4 | eqid | |
|
5 | 1 4 | qus0 | |
6 | 5 | 3ad2ant2 | |
7 | tgpgrp | |
|
8 | 7 | 3ad2ant1 | |
9 | eqid | |
|
10 | 9 4 | grpidcl | |
11 | 8 10 | syl | |
12 | ovex | |
|
13 | 12 | ecelqsi | |
14 | 11 13 | syl | |
15 | 6 14 | eqeltrrd | |
16 | 15 | snssd | |
17 | eqid | |
|
18 | 17 | mptpreima | |
19 | nsgsubg | |
|
20 | 19 | 3ad2ant2 | |
21 | eqid | |
|
22 | 9 21 4 | eqgid | |
23 | 20 22 | syl | |
24 | 9 | subgss | |
25 | 20 24 | syl | |
26 | 23 25 | eqsstrd | |
27 | sseqin2 | |
|
28 | 26 27 | sylib | |
29 | 9 21 | eqger | |
30 | 20 29 | syl | |
31 | 30 11 | erth | |
32 | 31 | adantr | |
33 | 6 | adantr | |
34 | 33 | eqeq1d | |
35 | 32 34 | bitrd | |
36 | vex | |
|
37 | fvex | |
|
38 | 36 37 | elec | |
39 | fvex | |
|
40 | 39 | elsn2 | |
41 | eqcom | |
|
42 | 40 41 | bitri | |
43 | 35 38 42 | 3bitr4g | |
44 | 43 | rabbi2dva | |
45 | 28 44 23 | 3eqtr3d | |
46 | 18 45 | eqtrid | |
47 | simp3 | |
|
48 | 46 47 | eqeltrd | |
49 | 2 9 | tgptopon | |
50 | 49 | 3ad2ant1 | |
51 | 1 | a1i | |
52 | eqidd | |
|
53 | 12 | a1i | |
54 | simp1 | |
|
55 | 51 52 17 53 54 | quslem | |
56 | qtopcld | |
|
57 | 50 55 56 | syl2anc | |
58 | 16 48 57 | mpbir2and | |
59 | 51 52 17 53 54 | qusval | |
60 | 59 52 55 54 2 3 | imastopn | |
61 | 60 | fveq2d | |
62 | 58 61 | eleqtrrd | |
63 | 1 | qustgp | |
64 | 63 | 3adant3 | |
65 | eqid | |
|
66 | 65 3 | tgphaus | |
67 | 64 66 | syl | |
68 | 62 67 | mpbird | |