Description: A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgphaus.1 | |
|
tgphaus.j | |
||
Assertion | tgphaus | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgphaus.1 | |
|
2 | tgphaus.j | |
|
3 | tgpgrp | |
|
4 | eqid | |
|
5 | 4 1 | grpidcl | |
6 | 3 5 | syl | |
7 | 2 4 | tgptopon | |
8 | toponuni | |
|
9 | 7 8 | syl | |
10 | 6 9 | eleqtrd | |
11 | eqid | |
|
12 | 11 | sncld | |
13 | 12 | expcom | |
14 | 10 13 | syl | |
15 | eqid | |
|
16 | 2 15 | tgpsubcn | |
17 | cnclima | |
|
18 | 17 | ex | |
19 | 16 18 | syl | |
20 | cnvimass | |
|
21 | 4 15 | grpsubf | |
22 | 3 21 | syl | |
23 | 20 22 | fssdm | |
24 | relxp | |
|
25 | relss | |
|
26 | 23 24 25 | mpisyl | |
27 | dfrel4v | |
|
28 | 26 27 | sylib | |
29 | 22 | ffnd | |
30 | elpreima | |
|
31 | 29 30 | syl | |
32 | opelxp | |
|
33 | 32 | anbi1i | |
34 | 4 1 15 | grpsubeq0 | |
35 | 34 | 3expb | |
36 | 3 35 | sylan | |
37 | df-ov | |
|
38 | 37 | eleq1i | |
39 | ovex | |
|
40 | 39 | elsn | |
41 | 38 40 | bitr3i | |
42 | equcom | |
|
43 | 36 41 42 | 3bitr4g | |
44 | 43 | pm5.32da | |
45 | 33 44 | bitrid | |
46 | 31 45 | bitrd | |
47 | df-br | |
|
48 | eleq1w | |
|
49 | 48 | biimparc | |
50 | 49 | pm4.71i | |
51 | an32 | |
|
52 | 50 51 | bitr4i | |
53 | 46 47 52 | 3bitr4g | |
54 | 53 | opabbidv | |
55 | opabresid | |
|
56 | 54 55 | eqtr4di | |
57 | 9 | reseq2d | |
58 | 28 56 57 | 3eqtrd | |
59 | 58 | eleq1d | |
60 | 19 59 | sylibd | |
61 | topontop | |
|
62 | 7 61 | syl | |
63 | 11 | hausdiag | |
64 | 63 | baib | |
65 | 62 64 | syl | |
66 | 60 65 | sylibrd | |
67 | 14 66 | impbid | |