Metamath Proof Explorer


Theorem tgphaus

Description: A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses tgphaus.1 0˙=0G
tgphaus.j J=TopOpenG
Assertion tgphaus GTopGrpJHaus0˙ClsdJ

Proof

Step Hyp Ref Expression
1 tgphaus.1 0˙=0G
2 tgphaus.j J=TopOpenG
3 tgpgrp GTopGrpGGrp
4 eqid BaseG=BaseG
5 4 1 grpidcl GGrp0˙BaseG
6 3 5 syl GTopGrp0˙BaseG
7 2 4 tgptopon GTopGrpJTopOnBaseG
8 toponuni JTopOnBaseGBaseG=J
9 7 8 syl GTopGrpBaseG=J
10 6 9 eleqtrd GTopGrp0˙J
11 eqid J=J
12 11 sncld JHaus0˙J0˙ClsdJ
13 12 expcom 0˙JJHaus0˙ClsdJ
14 10 13 syl GTopGrpJHaus0˙ClsdJ
15 eqid -G=-G
16 2 15 tgpsubcn GTopGrp-GJ×tJCnJ
17 cnclima -GJ×tJCnJ0˙ClsdJ-G-10˙ClsdJ×tJ
18 17 ex -GJ×tJCnJ0˙ClsdJ-G-10˙ClsdJ×tJ
19 16 18 syl GTopGrp0˙ClsdJ-G-10˙ClsdJ×tJ
20 cnvimass -G-10˙dom-G
21 4 15 grpsubf GGrp-G:BaseG×BaseGBaseG
22 3 21 syl GTopGrp-G:BaseG×BaseGBaseG
23 20 22 fssdm GTopGrp-G-10˙BaseG×BaseG
24 relxp RelBaseG×BaseG
25 relss -G-10˙BaseG×BaseGRelBaseG×BaseGRel-G-10˙
26 23 24 25 mpisyl GTopGrpRel-G-10˙
27 dfrel4v Rel-G-10˙-G-10˙=xy|x-G-10˙y
28 26 27 sylib GTopGrp-G-10˙=xy|x-G-10˙y
29 22 ffnd GTopGrp-GFnBaseG×BaseG
30 elpreima -GFnBaseG×BaseGxy-G-10˙xyBaseG×BaseG-Gxy0˙
31 29 30 syl GTopGrpxy-G-10˙xyBaseG×BaseG-Gxy0˙
32 opelxp xyBaseG×BaseGxBaseGyBaseG
33 32 anbi1i xyBaseG×BaseG-Gxy0˙xBaseGyBaseG-Gxy0˙
34 4 1 15 grpsubeq0 GGrpxBaseGyBaseGx-Gy=0˙x=y
35 34 3expb GGrpxBaseGyBaseGx-Gy=0˙x=y
36 3 35 sylan GTopGrpxBaseGyBaseGx-Gy=0˙x=y
37 df-ov x-Gy=-Gxy
38 37 eleq1i x-Gy0˙-Gxy0˙
39 ovex x-GyV
40 39 elsn x-Gy0˙x-Gy=0˙
41 38 40 bitr3i -Gxy0˙x-Gy=0˙
42 equcom y=xx=y
43 36 41 42 3bitr4g GTopGrpxBaseGyBaseG-Gxy0˙y=x
44 43 pm5.32da GTopGrpxBaseGyBaseG-Gxy0˙xBaseGyBaseGy=x
45 33 44 bitrid GTopGrpxyBaseG×BaseG-Gxy0˙xBaseGyBaseGy=x
46 31 45 bitrd GTopGrpxy-G-10˙xBaseGyBaseGy=x
47 df-br x-G-10˙yxy-G-10˙
48 eleq1w y=xyBaseGxBaseG
49 48 biimparc xBaseGy=xyBaseG
50 49 pm4.71i xBaseGy=xxBaseGy=xyBaseG
51 an32 xBaseGyBaseGy=xxBaseGy=xyBaseG
52 50 51 bitr4i xBaseGy=xxBaseGyBaseGy=x
53 46 47 52 3bitr4g GTopGrpx-G-10˙yxBaseGy=x
54 53 opabbidv GTopGrpxy|x-G-10˙y=xy|xBaseGy=x
55 opabresid IBaseG=xy|xBaseGy=x
56 54 55 eqtr4di GTopGrpxy|x-G-10˙y=IBaseG
57 9 reseq2d GTopGrpIBaseG=IJ
58 28 56 57 3eqtrd GTopGrp-G-10˙=IJ
59 58 eleq1d GTopGrp-G-10˙ClsdJ×tJIJClsdJ×tJ
60 19 59 sylibd GTopGrp0˙ClsdJIJClsdJ×tJ
61 topontop JTopOnBaseGJTop
62 7 61 syl GTopGrpJTop
63 11 hausdiag JHausJTopIJClsdJ×tJ
64 63 baib JTopJHausIJClsdJ×tJ
65 62 64 syl GTopGrpJHausIJClsdJ×tJ
66 60 65 sylibrd GTopGrp0˙ClsdJJHaus
67 14 66 impbid GTopGrpJHaus0˙ClsdJ