Metamath Proof Explorer


Theorem hausdiag

Description: A topology is Hausdorff iff the diagonal set is closed in the topology's product with itself.EDITORIAL: very clumsy proof, can probably be shortened substantially. (Contributed by Stefan O'Rear, 25-Jan-2015) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Hypothesis hausdiag.x X=J
Assertion hausdiag JHausJTopIXClsdJ×tJ

Proof

Step Hyp Ref Expression
1 hausdiag.x X=J
2 1 ishaus JHausJTopaXbXabcJdJacbdcd=
3 txtop JTopJTopJ×tJTop
4 3 anidms JTopJ×tJTop
5 idssxp IXX×X
6 1 1 txuni JTopJTopX×X=J×tJ
7 6 anidms JTopX×X=J×tJ
8 5 7 sseqtrid JTopIXJ×tJ
9 eqid J×tJ=J×tJ
10 9 iscld2 J×tJTopIXJ×tJIXClsdJ×tJJ×tJIXJ×tJ
11 4 8 10 syl2anc JTopIXClsdJ×tJJ×tJIXJ×tJ
12 eltx JTopJTopJ×tJIXJ×tJeJ×tJIXcJdJec×dc×dJ×tJIX
13 12 anidms JTopJ×tJIXJ×tJeJ×tJIXcJdJec×dc×dJ×tJIX
14 eldif eJ×tJIXeJ×tJ¬eIX
15 7 eqcomd JTopJ×tJ=X×X
16 15 eleq2d JTopeJ×tJeX×X
17 16 anbi1d JTopeJ×tJ¬eIXeX×X¬eIX
18 14 17 bitrid JTopeJ×tJIXeX×X¬eIX
19 18 imbi1d JTopeJ×tJIXcJdJec×dc×dJ×tJIXeX×X¬eIXcJdJec×dc×dJ×tJIX
20 impexp eX×X¬eIXcJdJec×dc×dJ×tJIXeX×X¬eIXcJdJec×dc×dJ×tJIX
21 19 20 bitrdi JTopeJ×tJIXcJdJec×dc×dJ×tJIXeX×X¬eIXcJdJec×dc×dJ×tJIX
22 21 ralbidv2 JTopeJ×tJIXcJdJec×dc×dJ×tJIXeX×X¬eIXcJdJec×dc×dJ×tJIX
23 eleq1 e=abeIXabIX
24 23 notbid e=ab¬eIX¬abIX
25 eleq1 e=abec×dabc×d
26 25 anbi1d e=abec×dc×dJ×tJIXabc×dc×dJ×tJIX
27 26 2rexbidv e=abcJdJec×dc×dJ×tJIXcJdJabc×dc×dJ×tJIX
28 24 27 imbi12d e=ab¬eIXcJdJec×dc×dJ×tJIX¬abIXcJdJabc×dc×dJ×tJIX
29 28 ralxp eX×X¬eIXcJdJec×dc×dJ×tJIXaXbX¬abIXcJdJabc×dc×dJ×tJIX
30 22 29 bitrdi JTopeJ×tJIXcJdJec×dc×dJ×tJIXaXbX¬abIXcJdJabc×dc×dJ×tJIX
31 vex bV
32 31 opelresi abIXaXabI
33 ibar aXabIaXabI
34 33 adantr aXbXabIaXabI
35 df-br aIbabI
36 31 ideq aIba=b
37 35 36 bitr3i abIa=b
38 34 37 bitr3di aXbXaXabIa=b
39 32 38 bitrid aXbXabIXa=b
40 39 adantl JTopaXbXabIXa=b
41 40 necon3bbid JTopaXbX¬abIXab
42 elssuni cJcJ
43 elssuni dJdJ
44 xpss12 cJdJc×dJ×J
45 42 43 44 syl2an cJdJc×dJ×J
46 1 1 xpeq12i X×X=J×J
47 45 46 sseqtrrdi cJdJc×dX×X
48 47 adantl JTopaXbXcJdJc×dX×X
49 7 ad2antrr JTopaXbXcJdJX×X=J×tJ
50 48 49 sseqtrd JTopaXbXcJdJc×dJ×tJ
51 reldisj c×dJ×tJc×dIX=c×dJ×tJIX
52 50 51 syl JTopaXbXcJdJc×dIX=c×dJ×tJIX
53 df-res IX=IX×V
54 53 ineq2i c×dIX=c×dIX×V
55 inass c×dIX×V=c×dIX×V
56 inss1 c×dIc×d
57 56 48 sstrid JTopaXbXcJdJc×dIX×X
58 ssv XV
59 xpss2 XVX×XX×V
60 58 59 ax-mp X×XX×V
61 57 60 sstrdi JTopaXbXcJdJc×dIX×V
62 df-ss c×dIX×Vc×dIX×V=c×dI
63 61 62 sylib JTopaXbXcJdJc×dIX×V=c×dI
64 55 63 eqtr3id JTopaXbXcJdJc×dIX×V=c×dI
65 54 64 eqtrid JTopaXbXcJdJc×dIX=c×dI
66 65 eqeq1d JTopaXbXcJdJc×dIX=c×dI=
67 opelxp aac×dacad
68 df-br ac×daaac×d
69 elin acdacad
70 67 68 69 3bitr4i ac×daacd
71 70 notbii ¬ac×da¬acd
72 71 albii a¬ac×daa¬acd
73 intirr c×dI=a¬ac×da
74 eq0 cd=a¬acd
75 72 73 74 3bitr4i c×dI=cd=
76 66 75 bitrdi JTopaXbXcJdJc×dIX=cd=
77 52 76 bitr3d JTopaXbXcJdJc×dJ×tJIXcd=
78 77 anbi2d JTopaXbXcJdJacbdc×dJ×tJIXacbdcd=
79 opelxp abc×dacbd
80 79 anbi1i abc×dc×dJ×tJIXacbdc×dJ×tJIX
81 df-3an acbdcd=acbdcd=
82 78 80 81 3bitr4g JTopaXbXcJdJabc×dc×dJ×tJIXacbdcd=
83 82 2rexbidva JTopaXbXcJdJabc×dc×dJ×tJIXcJdJacbdcd=
84 41 83 imbi12d JTopaXbX¬abIXcJdJabc×dc×dJ×tJIXabcJdJacbdcd=
85 84 2ralbidva JTopaXbX¬abIXcJdJabc×dc×dJ×tJIXaXbXabcJdJacbdcd=
86 30 85 bitrd JTopeJ×tJIXcJdJec×dc×dJ×tJIXaXbXabcJdJacbdcd=
87 11 13 86 3bitrrd JTopaXbXabcJdJacbdcd=IXClsdJ×tJ
88 87 pm5.32i JTopaXbXabcJdJacbdcd=JTopIXClsdJ×tJ
89 2 88 bitri JHausJTopIXClsdJ×tJ