Description: In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hauseqlcld.k | |
|
hauseqlcld.f | |
||
hauseqlcld.g | |
||
Assertion | hauseqlcld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hauseqlcld.k | |
|
2 | hauseqlcld.f | |
|
3 | hauseqlcld.g | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | cnf | |
7 | 2 6 | syl | |
8 | 7 | ffvelcdmda | |
9 | 8 | biantrurd | |
10 | fvex | |
|
11 | 10 | ideq | |
12 | df-br | |
|
13 | 11 12 | bitr3i | |
14 | 10 | opelresi | |
15 | 9 13 14 | 3bitr4g | |
16 | fveq2 | |
|
17 | fveq2 | |
|
18 | 16 17 | opeq12d | |
19 | eqid | |
|
20 | opex | |
|
21 | 18 19 20 | fvmpt | |
22 | 21 | adantl | |
23 | 22 | eleq1d | |
24 | 15 23 | bitr4d | |
25 | 24 | pm5.32da | |
26 | 7 | ffnd | |
27 | 4 5 | cnf | |
28 | 3 27 | syl | |
29 | 28 | ffnd | |
30 | fndmin | |
|
31 | 26 29 30 | syl2anc | |
32 | 31 | eleq2d | |
33 | rabid | |
|
34 | 32 33 | bitrdi | |
35 | opex | |
|
36 | 35 19 | fnmpti | |
37 | elpreima | |
|
38 | 36 37 | mp1i | |
39 | 25 34 38 | 3bitr4d | |
40 | 39 | eqrdv | |
41 | 4 19 | txcnmpt | |
42 | 2 3 41 | syl2anc | |
43 | 5 | hausdiag | |
44 | 43 | simprbi | |
45 | 1 44 | syl | |
46 | cnclima | |
|
47 | 42 45 46 | syl2anc | |
48 | 40 47 | eqeltrd | |