Metamath Proof Explorer


Theorem hauseqlcld

Description: In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses hauseqlcld.k φKHaus
hauseqlcld.f φFJCnK
hauseqlcld.g φGJCnK
Assertion hauseqlcld φdomFGClsdJ

Proof

Step Hyp Ref Expression
1 hauseqlcld.k φKHaus
2 hauseqlcld.f φFJCnK
3 hauseqlcld.g φGJCnK
4 eqid J=J
5 eqid K=K
6 4 5 cnf FJCnKF:JK
7 2 6 syl φF:JK
8 7 ffvelcdmda φbJFbK
9 8 biantrurd φbJFbGbIFbKFbGbI
10 fvex GbV
11 10 ideq FbIGbFb=Gb
12 df-br FbIGbFbGbI
13 11 12 bitr3i Fb=GbFbGbI
14 10 opelresi FbGbIKFbKFbGbI
15 9 13 14 3bitr4g φbJFb=GbFbGbIK
16 fveq2 a=bFa=Fb
17 fveq2 a=bGa=Gb
18 16 17 opeq12d a=bFaGa=FbGb
19 eqid aJFaGa=aJFaGa
20 opex FbGbV
21 18 19 20 fvmpt bJaJFaGab=FbGb
22 21 adantl φbJaJFaGab=FbGb
23 22 eleq1d φbJaJFaGabIKFbGbIK
24 15 23 bitr4d φbJFb=GbaJFaGabIK
25 24 pm5.32da φbJFb=GbbJaJFaGabIK
26 7 ffnd φFFnJ
27 4 5 cnf GJCnKG:JK
28 3 27 syl φG:JK
29 28 ffnd φGFnJ
30 fndmin FFnJGFnJdomFG=bJ|Fb=Gb
31 26 29 30 syl2anc φdomFG=bJ|Fb=Gb
32 31 eleq2d φbdomFGbbJ|Fb=Gb
33 rabid bbJ|Fb=GbbJFb=Gb
34 32 33 bitrdi φbdomFGbJFb=Gb
35 opex FaGaV
36 35 19 fnmpti aJFaGaFnJ
37 elpreima aJFaGaFnJbaJFaGa-1IKbJaJFaGabIK
38 36 37 mp1i φbaJFaGa-1IKbJaJFaGabIK
39 25 34 38 3bitr4d φbdomFGbaJFaGa-1IK
40 39 eqrdv φdomFG=aJFaGa-1IK
41 4 19 txcnmpt FJCnKGJCnKaJFaGaJCnK×tK
42 2 3 41 syl2anc φaJFaGaJCnK×tK
43 5 hausdiag KHausKTopIKClsdK×tK
44 43 simprbi KHausIKClsdK×tK
45 1 44 syl φIKClsdK×tK
46 cnclima aJFaGaJCnK×tKIKClsdK×tKaJFaGa-1IKClsdJ
47 42 45 46 syl2anc φaJFaGa-1IKClsdJ
48 40 47 eqeltrd φdomFGClsdJ