Metamath Proof Explorer


Theorem opabresid

Description: The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012)

Ref Expression
Assertion opabresid IA=xy|xAy=x

Proof

Step Hyp Ref Expression
1 df-id I=xy|x=y
2 equcom x=yy=x
3 2 opabbii xy|x=y=xy|y=x
4 1 3 eqtri I=xy|y=x
5 4 reseq1i IA=xy|y=xA
6 resopab xy|y=xA=xy|xAy=x
7 5 6 eqtri IA=xy|xAy=x