| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgphaus.1 |
|- .0. = ( 0g ` G ) |
| 2 |
|
tgphaus.j |
|- J = ( TopOpen ` G ) |
| 3 |
|
tgpgrp |
|- ( G e. TopGrp -> G e. Grp ) |
| 4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 5 |
4 1
|
grpidcl |
|- ( G e. Grp -> .0. e. ( Base ` G ) ) |
| 6 |
3 5
|
syl |
|- ( G e. TopGrp -> .0. e. ( Base ` G ) ) |
| 7 |
2 4
|
tgptopon |
|- ( G e. TopGrp -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 8 |
|
toponuni |
|- ( J e. ( TopOn ` ( Base ` G ) ) -> ( Base ` G ) = U. J ) |
| 9 |
7 8
|
syl |
|- ( G e. TopGrp -> ( Base ` G ) = U. J ) |
| 10 |
6 9
|
eleqtrd |
|- ( G e. TopGrp -> .0. e. U. J ) |
| 11 |
|
eqid |
|- U. J = U. J |
| 12 |
11
|
sncld |
|- ( ( J e. Haus /\ .0. e. U. J ) -> { .0. } e. ( Clsd ` J ) ) |
| 13 |
12
|
expcom |
|- ( .0. e. U. J -> ( J e. Haus -> { .0. } e. ( Clsd ` J ) ) ) |
| 14 |
10 13
|
syl |
|- ( G e. TopGrp -> ( J e. Haus -> { .0. } e. ( Clsd ` J ) ) ) |
| 15 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 16 |
2 15
|
tgpsubcn |
|- ( G e. TopGrp -> ( -g ` G ) e. ( ( J tX J ) Cn J ) ) |
| 17 |
|
cnclima |
|- ( ( ( -g ` G ) e. ( ( J tX J ) Cn J ) /\ { .0. } e. ( Clsd ` J ) ) -> ( `' ( -g ` G ) " { .0. } ) e. ( Clsd ` ( J tX J ) ) ) |
| 18 |
17
|
ex |
|- ( ( -g ` G ) e. ( ( J tX J ) Cn J ) -> ( { .0. } e. ( Clsd ` J ) -> ( `' ( -g ` G ) " { .0. } ) e. ( Clsd ` ( J tX J ) ) ) ) |
| 19 |
16 18
|
syl |
|- ( G e. TopGrp -> ( { .0. } e. ( Clsd ` J ) -> ( `' ( -g ` G ) " { .0. } ) e. ( Clsd ` ( J tX J ) ) ) ) |
| 20 |
|
cnvimass |
|- ( `' ( -g ` G ) " { .0. } ) C_ dom ( -g ` G ) |
| 21 |
4 15
|
grpsubf |
|- ( G e. Grp -> ( -g ` G ) : ( ( Base ` G ) X. ( Base ` G ) ) --> ( Base ` G ) ) |
| 22 |
3 21
|
syl |
|- ( G e. TopGrp -> ( -g ` G ) : ( ( Base ` G ) X. ( Base ` G ) ) --> ( Base ` G ) ) |
| 23 |
20 22
|
fssdm |
|- ( G e. TopGrp -> ( `' ( -g ` G ) " { .0. } ) C_ ( ( Base ` G ) X. ( Base ` G ) ) ) |
| 24 |
|
relxp |
|- Rel ( ( Base ` G ) X. ( Base ` G ) ) |
| 25 |
|
relss |
|- ( ( `' ( -g ` G ) " { .0. } ) C_ ( ( Base ` G ) X. ( Base ` G ) ) -> ( Rel ( ( Base ` G ) X. ( Base ` G ) ) -> Rel ( `' ( -g ` G ) " { .0. } ) ) ) |
| 26 |
23 24 25
|
mpisyl |
|- ( G e. TopGrp -> Rel ( `' ( -g ` G ) " { .0. } ) ) |
| 27 |
|
dfrel4v |
|- ( Rel ( `' ( -g ` G ) " { .0. } ) <-> ( `' ( -g ` G ) " { .0. } ) = { <. x , y >. | x ( `' ( -g ` G ) " { .0. } ) y } ) |
| 28 |
26 27
|
sylib |
|- ( G e. TopGrp -> ( `' ( -g ` G ) " { .0. } ) = { <. x , y >. | x ( `' ( -g ` G ) " { .0. } ) y } ) |
| 29 |
22
|
ffnd |
|- ( G e. TopGrp -> ( -g ` G ) Fn ( ( Base ` G ) X. ( Base ` G ) ) ) |
| 30 |
|
elpreima |
|- ( ( -g ` G ) Fn ( ( Base ` G ) X. ( Base ` G ) ) -> ( <. x , y >. e. ( `' ( -g ` G ) " { .0. } ) <-> ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) ) ) |
| 31 |
29 30
|
syl |
|- ( G e. TopGrp -> ( <. x , y >. e. ( `' ( -g ` G ) " { .0. } ) <-> ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) ) ) |
| 32 |
|
opelxp |
|- ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) <-> ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) |
| 33 |
32
|
anbi1i |
|- ( ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) <-> ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) ) |
| 34 |
4 1 15
|
grpsubeq0 |
|- ( ( G e. Grp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( ( x ( -g ` G ) y ) = .0. <-> x = y ) ) |
| 35 |
34
|
3expb |
|- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( ( x ( -g ` G ) y ) = .0. <-> x = y ) ) |
| 36 |
3 35
|
sylan |
|- ( ( G e. TopGrp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( ( x ( -g ` G ) y ) = .0. <-> x = y ) ) |
| 37 |
|
df-ov |
|- ( x ( -g ` G ) y ) = ( ( -g ` G ) ` <. x , y >. ) |
| 38 |
37
|
eleq1i |
|- ( ( x ( -g ` G ) y ) e. { .0. } <-> ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) |
| 39 |
|
ovex |
|- ( x ( -g ` G ) y ) e. _V |
| 40 |
39
|
elsn |
|- ( ( x ( -g ` G ) y ) e. { .0. } <-> ( x ( -g ` G ) y ) = .0. ) |
| 41 |
38 40
|
bitr3i |
|- ( ( ( -g ` G ) ` <. x , y >. ) e. { .0. } <-> ( x ( -g ` G ) y ) = .0. ) |
| 42 |
|
equcom |
|- ( y = x <-> x = y ) |
| 43 |
36 41 42
|
3bitr4g |
|- ( ( G e. TopGrp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( ( ( -g ` G ) ` <. x , y >. ) e. { .0. } <-> y = x ) ) |
| 44 |
43
|
pm5.32da |
|- ( G e. TopGrp -> ( ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) <-> ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ y = x ) ) ) |
| 45 |
33 44
|
bitrid |
|- ( G e. TopGrp -> ( ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) <-> ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ y = x ) ) ) |
| 46 |
31 45
|
bitrd |
|- ( G e. TopGrp -> ( <. x , y >. e. ( `' ( -g ` G ) " { .0. } ) <-> ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ y = x ) ) ) |
| 47 |
|
df-br |
|- ( x ( `' ( -g ` G ) " { .0. } ) y <-> <. x , y >. e. ( `' ( -g ` G ) " { .0. } ) ) |
| 48 |
|
eleq1w |
|- ( y = x -> ( y e. ( Base ` G ) <-> x e. ( Base ` G ) ) ) |
| 49 |
48
|
biimparc |
|- ( ( x e. ( Base ` G ) /\ y = x ) -> y e. ( Base ` G ) ) |
| 50 |
49
|
pm4.71i |
|- ( ( x e. ( Base ` G ) /\ y = x ) <-> ( ( x e. ( Base ` G ) /\ y = x ) /\ y e. ( Base ` G ) ) ) |
| 51 |
|
an32 |
|- ( ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ y = x ) <-> ( ( x e. ( Base ` G ) /\ y = x ) /\ y e. ( Base ` G ) ) ) |
| 52 |
50 51
|
bitr4i |
|- ( ( x e. ( Base ` G ) /\ y = x ) <-> ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ y = x ) ) |
| 53 |
46 47 52
|
3bitr4g |
|- ( G e. TopGrp -> ( x ( `' ( -g ` G ) " { .0. } ) y <-> ( x e. ( Base ` G ) /\ y = x ) ) ) |
| 54 |
53
|
opabbidv |
|- ( G e. TopGrp -> { <. x , y >. | x ( `' ( -g ` G ) " { .0. } ) y } = { <. x , y >. | ( x e. ( Base ` G ) /\ y = x ) } ) |
| 55 |
|
opabresid |
|- ( _I |` ( Base ` G ) ) = { <. x , y >. | ( x e. ( Base ` G ) /\ y = x ) } |
| 56 |
54 55
|
eqtr4di |
|- ( G e. TopGrp -> { <. x , y >. | x ( `' ( -g ` G ) " { .0. } ) y } = ( _I |` ( Base ` G ) ) ) |
| 57 |
9
|
reseq2d |
|- ( G e. TopGrp -> ( _I |` ( Base ` G ) ) = ( _I |` U. J ) ) |
| 58 |
28 56 57
|
3eqtrd |
|- ( G e. TopGrp -> ( `' ( -g ` G ) " { .0. } ) = ( _I |` U. J ) ) |
| 59 |
58
|
eleq1d |
|- ( G e. TopGrp -> ( ( `' ( -g ` G ) " { .0. } ) e. ( Clsd ` ( J tX J ) ) <-> ( _I |` U. J ) e. ( Clsd ` ( J tX J ) ) ) ) |
| 60 |
19 59
|
sylibd |
|- ( G e. TopGrp -> ( { .0. } e. ( Clsd ` J ) -> ( _I |` U. J ) e. ( Clsd ` ( J tX J ) ) ) ) |
| 61 |
|
topontop |
|- ( J e. ( TopOn ` ( Base ` G ) ) -> J e. Top ) |
| 62 |
7 61
|
syl |
|- ( G e. TopGrp -> J e. Top ) |
| 63 |
11
|
hausdiag |
|- ( J e. Haus <-> ( J e. Top /\ ( _I |` U. J ) e. ( Clsd ` ( J tX J ) ) ) ) |
| 64 |
63
|
baib |
|- ( J e. Top -> ( J e. Haus <-> ( _I |` U. J ) e. ( Clsd ` ( J tX J ) ) ) ) |
| 65 |
62 64
|
syl |
|- ( G e. TopGrp -> ( J e. Haus <-> ( _I |` U. J ) e. ( Clsd ` ( J tX J ) ) ) ) |
| 66 |
60 65
|
sylibrd |
|- ( G e. TopGrp -> ( { .0. } e. ( Clsd ` J ) -> J e. Haus ) ) |
| 67 |
14 66
|
impbid |
|- ( G e. TopGrp -> ( J e. Haus <-> { .0. } e. ( Clsd ` J ) ) ) |