Metamath Proof Explorer


Theorem r1sscl

Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1sscl ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐶𝐴 ) → 𝐶 ∈ ( 𝑅1𝐵 ) )

Proof

Step Hyp Ref Expression
1 r1pwss ( 𝐴 ∈ ( 𝑅1𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) )
2 1 adantr ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐶𝐴 ) → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) )
3 elpw2g ( 𝐴 ∈ ( 𝑅1𝐵 ) → ( 𝐶 ∈ 𝒫 𝐴𝐶𝐴 ) )
4 3 biimpar ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐶𝐴 ) → 𝐶 ∈ 𝒫 𝐴 )
5 2 4 sseldd ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐶𝐴 ) → 𝐶 ∈ ( 𝑅1𝐵 ) )