Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | r1sscl | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ∈ ( 𝑅1 ‘ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1pwss | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) | |
2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
3 | elpw2g | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐶 ∈ 𝒫 𝐴 ↔ 𝐶 ⊆ 𝐴 ) ) | |
4 | 3 | biimpar | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ∈ 𝒫 𝐴 ) |
5 | 2 4 | sseldd | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ∈ ( 𝑅1 ‘ 𝐵 ) ) |