Description: Version of rabeqbidva with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabeqbida.nf | ⊢ Ⅎ 𝑥 𝜑 | |
| rabeqbida.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| rabeqbida.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | rabeqbida | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbida.nf | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rabeqbida.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | rabeqbida.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 1 3 | rabbida | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
| 5 | 1 2 | rabeqd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜒 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
| 6 | 4 5 | eqtrd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |