| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralidmw.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 3 |
2
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 4 |
3
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 5 |
|
pm2.21 |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 6 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 7 |
6 1
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ) |
| 8 |
7
|
spw |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 9 |
5 8
|
ja |
⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 10 |
9
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 11 |
7
|
hba1w |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ∀ 𝑥 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 12 |
|
ax-1 |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 13 |
11 12
|
alrimih |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 14 |
10 13
|
impbii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 15 |
4 14
|
bitri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 16 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 17 |
15 16 2
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |