| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ax-1 | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  →  ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							axc4i | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							pm2.21 | 
							⊢ ( ¬  𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐴  →  𝜑 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							sp | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  →  ( 𝑥  ∈  𝐴  →  𝜑 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							ja | 
							⊢ ( ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) )  →  ( 𝑥  ∈  𝐴  →  𝜑 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							alimi | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) )  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							impbii | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) )  | 
						
						
							| 10 | 
							
								2
							 | 
							bicomi | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ∀ 𝑥  ∈  𝐴 𝜑 )  | 
						
						
							| 11 | 
							
								10
							 | 
							imbi2i | 
							⊢ ( ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) )  ↔  ( 𝑥  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							albii | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 ) )  | 
						
						
							| 13 | 
							
								2 9 12
							 | 
							3bitrri | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 )  ↔  ∀ 𝑥  ∈  𝐴 𝜑 )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							bitri | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥  ∈  𝐴 𝜑 )  |