Metamath Proof Explorer


Theorem ralopabb

Description: Restricted universal quantification over an ordered-pair class abstraction. (Contributed by RP, 25-Sep-2024)

Ref Expression
Hypotheses ralopabb.o 𝑂 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
ralopabb.p ( 𝑜 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜓𝜒 ) )
Assertion ralopabb ( ∀ 𝑜𝑂 𝜓 ↔ ∀ 𝑥𝑦 ( 𝜑𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralopabb.o 𝑂 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
2 ralopabb.p ( 𝑜 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜓𝜒 ) )
3 2nalexn ( ¬ ∀ 𝑥𝑦 ( 𝜑𝜒 ) ↔ ∃ 𝑥𝑦 ¬ ( 𝜑𝜒 ) )
4 2 notbid ( 𝑜 = ⟨ 𝑥 , 𝑦 ⟩ → ( ¬ 𝜓 ↔ ¬ 𝜒 ) )
5 1 4 rexopabb ( ∃ 𝑜𝑂 ¬ 𝜓 ↔ ∃ 𝑥𝑦 ( 𝜑 ∧ ¬ 𝜒 ) )
6 annim ( ( 𝜑 ∧ ¬ 𝜒 ) ↔ ¬ ( 𝜑𝜒 ) )
7 6 2exbii ( ∃ 𝑥𝑦 ( 𝜑 ∧ ¬ 𝜒 ) ↔ ∃ 𝑥𝑦 ¬ ( 𝜑𝜒 ) )
8 5 7 bitri ( ∃ 𝑜𝑂 ¬ 𝜓 ↔ ∃ 𝑥𝑦 ¬ ( 𝜑𝜒 ) )
9 rexnal ( ∃ 𝑜𝑂 ¬ 𝜓 ↔ ¬ ∀ 𝑜𝑂 𝜓 )
10 3 8 9 3bitr2ri ( ¬ ∀ 𝑜𝑂 𝜓 ↔ ¬ ∀ 𝑥𝑦 ( 𝜑𝜒 ) )
11 10 con4bii ( ∀ 𝑜𝑂 𝜓 ↔ ∀ 𝑥𝑦 ( 𝜑𝜒 ) )