Step |
Hyp |
Ref |
Expression |
1 |
|
ralopabb.o |
⊢ 𝑂 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } |
2 |
|
ralopabb.p |
⊢ ( 𝑜 = 〈 𝑥 , 𝑦 〉 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
2nalexn |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜒 ) ↔ ∃ 𝑥 ∃ 𝑦 ¬ ( 𝜑 → 𝜒 ) ) |
4 |
2
|
notbid |
⊢ ( 𝑜 = 〈 𝑥 , 𝑦 〉 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) |
5 |
1 4
|
rexopabb |
⊢ ( ∃ 𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ ¬ 𝜒 ) ) |
6 |
|
annim |
⊢ ( ( 𝜑 ∧ ¬ 𝜒 ) ↔ ¬ ( 𝜑 → 𝜒 ) ) |
7 |
6
|
2exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ ¬ 𝜒 ) ↔ ∃ 𝑥 ∃ 𝑦 ¬ ( 𝜑 → 𝜒 ) ) |
8 |
5 7
|
bitri |
⊢ ( ∃ 𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ¬ ( 𝜑 → 𝜒 ) ) |
9 |
|
rexnal |
⊢ ( ∃ 𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ¬ ∀ 𝑜 ∈ 𝑂 𝜓 ) |
10 |
3 8 9
|
3bitr2ri |
⊢ ( ¬ ∀ 𝑜 ∈ 𝑂 𝜓 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜒 ) ) |
11 |
10
|
con4bii |
⊢ ( ∀ 𝑜 ∈ 𝑂 𝜓 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜒 ) ) |