| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralopabb.o | ⊢ 𝑂  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝜑 } | 
						
							| 2 |  | ralopabb.p | ⊢ ( 𝑜  =  〈 𝑥 ,  𝑦 〉  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | 2nalexn | ⊢ ( ¬  ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  𝜒 )  ↔  ∃ 𝑥 ∃ 𝑦 ¬  ( 𝜑  →  𝜒 ) ) | 
						
							| 4 | 2 | notbid | ⊢ ( 𝑜  =  〈 𝑥 ,  𝑦 〉  →  ( ¬  𝜓  ↔  ¬  𝜒 ) ) | 
						
							| 5 | 1 4 | rexopabb | ⊢ ( ∃ 𝑜  ∈  𝑂 ¬  𝜓  ↔  ∃ 𝑥 ∃ 𝑦 ( 𝜑  ∧  ¬  𝜒 ) ) | 
						
							| 6 |  | annim | ⊢ ( ( 𝜑  ∧  ¬  𝜒 )  ↔  ¬  ( 𝜑  →  𝜒 ) ) | 
						
							| 7 | 6 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑  ∧  ¬  𝜒 )  ↔  ∃ 𝑥 ∃ 𝑦 ¬  ( 𝜑  →  𝜒 ) ) | 
						
							| 8 | 5 7 | bitri | ⊢ ( ∃ 𝑜  ∈  𝑂 ¬  𝜓  ↔  ∃ 𝑥 ∃ 𝑦 ¬  ( 𝜑  →  𝜒 ) ) | 
						
							| 9 |  | rexnal | ⊢ ( ∃ 𝑜  ∈  𝑂 ¬  𝜓  ↔  ¬  ∀ 𝑜  ∈  𝑂 𝜓 ) | 
						
							| 10 | 3 8 9 | 3bitr2ri | ⊢ ( ¬  ∀ 𝑜  ∈  𝑂 𝜓  ↔  ¬  ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  𝜒 ) ) | 
						
							| 11 | 10 | con4bii | ⊢ ( ∀ 𝑜  ∈  𝑂 𝜓  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  𝜒 ) ) |