| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankr1b.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
| 3 |
2
|
fveq2i |
⊢ ( rank ‘ suc 𝐴 ) = ( rank ‘ ( 𝐴 ∪ { 𝐴 } ) ) |
| 4 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 5 |
1 4
|
rankun |
⊢ ( rank ‘ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐴 } ) ) |
| 6 |
1
|
ranksn |
⊢ ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) |
| 7 |
6
|
uneq2i |
⊢ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐴 } ) ) = ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐴 ) ) |
| 8 |
|
sssucid |
⊢ ( rank ‘ 𝐴 ) ⊆ suc ( rank ‘ 𝐴 ) |
| 9 |
|
ssequn1 |
⊢ ( ( rank ‘ 𝐴 ) ⊆ suc ( rank ‘ 𝐴 ) ↔ ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐴 ) ) = suc ( rank ‘ 𝐴 ) ) |
| 10 |
8 9
|
mpbi |
⊢ ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐴 ) ) = suc ( rank ‘ 𝐴 ) |
| 11 |
7 10
|
eqtri |
⊢ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐴 } ) ) = suc ( rank ‘ 𝐴 ) |
| 12 |
5 11
|
eqtri |
⊢ ( rank ‘ ( 𝐴 ∪ { 𝐴 } ) ) = suc ( rank ‘ 𝐴 ) |
| 13 |
3 12
|
eqtri |
⊢ ( rank ‘ suc 𝐴 ) = suc ( rank ‘ 𝐴 ) |