Metamath Proof Explorer


Theorem recji

Description: Real part of a complex conjugate. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypothesis recl.1 𝐴 ∈ ℂ
Assertion recji ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 )

Proof

Step Hyp Ref Expression
1 recl.1 𝐴 ∈ ℂ
2 recj ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 ) )
3 1 2 ax-mp ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 )