Step |
Hyp |
Ref |
Expression |
1 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
3 |
|
ax-icn |
⊢ i ∈ ℂ |
4 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
6 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
7 |
3 5 6
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
8 |
2 7
|
negsubd |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + - ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
9 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
10 |
3 5 9
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) + - ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
12 |
|
remim |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
13 |
8 11 12
|
3eqtr4rd |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) = ( ℜ ‘ ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) ) ) |
15 |
4
|
renegcld |
⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
16 |
|
crre |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ - ( ℑ ‘ 𝐴 ) ∈ ℝ ) → ( ℜ ‘ ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) ) |
17 |
1 15 16
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) ) |
18 |
14 17
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |