| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reclt0d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
reclt0d.2 |
⊢ ( 𝜑 → 𝐴 < 0 ) |
| 3 |
|
0lt1 |
⊢ 0 < 1 |
| 4 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 1 / 𝐴 ) < 0 ) → 0 < 1 ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 1 / 𝐴 ) < 0 ) → ¬ ( 1 / 𝐴 ) < 0 ) |
| 6 |
|
0red |
⊢ ( ( 𝜑 ∧ ¬ ( 1 / 𝐴 ) < 0 ) → 0 ∈ ℝ ) |
| 7 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 8 |
2
|
lt0ne0d |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 9 |
7 1 8
|
redivcld |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 11 |
6 10
|
lenltd |
⊢ ( ( 𝜑 ∧ ¬ ( 1 / 𝐴 ) < 0 ) → ( 0 ≤ ( 1 / 𝐴 ) ↔ ¬ ( 1 / 𝐴 ) < 0 ) ) |
| 12 |
5 11
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( 1 / 𝐴 ) < 0 ) → 0 ≤ ( 1 / 𝐴 ) ) |
| 13 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 14 |
13 8
|
recidd |
⊢ ( 𝜑 → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 ) |
| 15 |
14
|
eqcomd |
⊢ ( 𝜑 → 1 = ( 𝐴 · ( 1 / 𝐴 ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → 1 = ( 𝐴 · ( 1 / 𝐴 ) ) ) |
| 17 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 18 |
1 17 2
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 0 ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → 𝐴 ≤ 0 ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → 0 ≤ ( 1 / 𝐴 ) ) |
| 21 |
19 20
|
jca |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → ( 𝐴 ≤ 0 ∧ 0 ≤ ( 1 / 𝐴 ) ) ) |
| 22 |
21
|
orcd |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( 1 / 𝐴 ) ) ∨ ( 0 ≤ 𝐴 ∧ ( 1 / 𝐴 ) ≤ 0 ) ) ) |
| 23 |
|
mulle0b |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( ( 𝐴 · ( 1 / 𝐴 ) ) ≤ 0 ↔ ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( 1 / 𝐴 ) ) ∨ ( 0 ≤ 𝐴 ∧ ( 1 / 𝐴 ) ≤ 0 ) ) ) ) |
| 24 |
1 9 23
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 · ( 1 / 𝐴 ) ) ≤ 0 ↔ ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( 1 / 𝐴 ) ) ∨ ( 0 ≤ 𝐴 ∧ ( 1 / 𝐴 ) ≤ 0 ) ) ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → ( ( 𝐴 · ( 1 / 𝐴 ) ) ≤ 0 ↔ ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( 1 / 𝐴 ) ) ∨ ( 0 ≤ 𝐴 ∧ ( 1 / 𝐴 ) ≤ 0 ) ) ) ) |
| 26 |
22 25
|
mpbird |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → ( 𝐴 · ( 1 / 𝐴 ) ) ≤ 0 ) |
| 27 |
16 26
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → 1 ≤ 0 ) |
| 28 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → 1 ∈ ℝ ) |
| 29 |
|
0red |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → 0 ∈ ℝ ) |
| 30 |
28 29
|
lenltd |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → ( 1 ≤ 0 ↔ ¬ 0 < 1 ) ) |
| 31 |
27 30
|
mpbid |
⊢ ( ( 𝜑 ∧ 0 ≤ ( 1 / 𝐴 ) ) → ¬ 0 < 1 ) |
| 32 |
12 31
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ ( 1 / 𝐴 ) < 0 ) → ¬ 0 < 1 ) |
| 33 |
4 32
|
condan |
⊢ ( 𝜑 → ( 1 / 𝐴 ) < 0 ) |