Description: A regular T_0 space is Hausdorff. In other words, a T_3 space is T_2 . A regular Hausdorff or T_0 space is also known as a T_3 space. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reghaus | ⊢ ( 𝐽 ∈ Reg → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Fre ) | |
| 2 | t1t0 | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Kol2 ) |
| 4 | regr1 | ⊢ ( 𝐽 ∈ Reg → ( KQ ‘ 𝐽 ) ∈ Haus ) | |
| 5 | 4 | anim2i | ⊢ ( ( 𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg ) → ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ Haus ) ) |
| 6 | ishaus3 | ⊢ ( 𝐽 ∈ Haus ↔ ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ Haus ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( ( 𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg ) → 𝐽 ∈ Haus ) |
| 8 | 7 | expcom | ⊢ ( 𝐽 ∈ Reg → ( 𝐽 ∈ Kol2 → 𝐽 ∈ Haus ) ) |
| 9 | 3 8 | impbid2 | ⊢ ( 𝐽 ∈ Reg → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2 ) ) |