Metamath Proof Explorer


Theorem releabs

Description: The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of Gleason p. 133. (Contributed by NM, 1-Apr-2005)

Ref Expression
Assertion releabs ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 recl ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ )
2 1 recnd ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ )
3 abscl ( ( ℜ ‘ 𝐴 ) ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ )
4 2 3 syl ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ )
5 abscl ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )
6 leabs ( ( ℜ ‘ 𝐴 ) ∈ ℝ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ ( ℜ ‘ 𝐴 ) ) )
7 1 6 syl ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ ( ℜ ‘ 𝐴 ) ) )
8 absrele ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) ≤ ( abs ‘ 𝐴 ) )
9 1 4 5 7 8 letrd ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) )