Description: Addition and subtraction of equals. Compare pncan2 . (Contributed by Steven Nguyen, 8-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | repncan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) −ℝ 𝐴 ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐵 ) | |
2 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) | |
3 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
4 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
5 | 2 3 4 | resubaddd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) −ℝ 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐵 ) ) ) |
6 | 1 5 | mpbiri | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) −ℝ 𝐴 ) = 𝐵 ) |