Metamath Proof Explorer


Theorem repncan2

Description: Addition and subtraction of equals. Compare pncan2 . (Contributed by Steven Nguyen, 8-Jan-2023)

Ref Expression
Assertion repncan2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 eqid ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐵 )
2 readdcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ )
3 simpl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ )
4 simpr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ )
5 2 3 4 resubaddd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐵 ) ) )
6 1 5 mpbiri ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 )