| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-s3 |
⊢ 〈“ 𝑆 𝑆 𝑆 ”〉 = ( 〈“ 𝑆 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) |
| 2 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 3 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 4 |
|
repswccat |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 2 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( 𝑆 repeatS 2 ) ++ ( 𝑆 repeatS 1 ) ) = ( 𝑆 repeatS ( 2 + 1 ) ) ) |
| 5 |
2 3 4
|
mp3an23 |
⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑆 repeatS 2 ) ++ ( 𝑆 repeatS 1 ) ) = ( 𝑆 repeatS ( 2 + 1 ) ) ) |
| 6 |
|
repsw2 |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 2 ) = 〈“ 𝑆 𝑆 ”〉 ) |
| 7 |
|
repsw1 |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 1 ) = 〈“ 𝑆 ”〉 ) |
| 8 |
6 7
|
oveq12d |
⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑆 repeatS 2 ) ++ ( 𝑆 repeatS 1 ) ) = ( 〈“ 𝑆 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) ) |
| 9 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 10 |
9
|
a1i |
⊢ ( 𝑆 ∈ 𝑉 → ( 2 + 1 ) = 3 ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS ( 2 + 1 ) ) = ( 𝑆 repeatS 3 ) ) |
| 12 |
5 8 11
|
3eqtr3d |
⊢ ( 𝑆 ∈ 𝑉 → ( 〈“ 𝑆 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) = ( 𝑆 repeatS 3 ) ) |
| 13 |
1 12
|
eqtr2id |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 3 ) = 〈“ 𝑆 𝑆 𝑆 ”〉 ) |