| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rescabs2.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 2 |  | rescabs2.j | ⊢ ( 𝜑  →  𝐽  Fn  ( 𝑇  ×  𝑇 ) ) | 
						
							| 3 |  | rescabs2.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑊 ) | 
						
							| 4 |  | rescabs2.t | ⊢ ( 𝜑  →  𝑇  ⊆  𝑆 ) | 
						
							| 5 |  | ressabs | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝑇  ⊆  𝑆 )  →  ( ( 𝐶  ↾s  𝑆 )  ↾s  𝑇 )  =  ( 𝐶  ↾s  𝑇 ) ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐶  ↾s  𝑆 )  ↾s  𝑇 )  =  ( 𝐶  ↾s  𝑇 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐶  ↾s  𝑆 )  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 8 |  | eqid | ⊢ ( ( 𝐶  ↾s  𝑆 )  ↾cat  𝐽 )  =  ( ( 𝐶  ↾s  𝑆 )  ↾cat  𝐽 ) | 
						
							| 9 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐶  ↾s  𝑆 )  ∈  V ) | 
						
							| 10 | 3 4 | ssexd | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 11 | 8 9 10 2 | rescval2 | ⊢ ( 𝜑  →  ( ( 𝐶  ↾s  𝑆 )  ↾cat  𝐽 )  =  ( ( ( 𝐶  ↾s  𝑆 )  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝐶  ↾cat  𝐽 )  =  ( 𝐶  ↾cat  𝐽 ) | 
						
							| 13 | 12 1 10 2 | rescval2 | ⊢ ( 𝜑  →  ( 𝐶  ↾cat  𝐽 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 14 | 7 11 13 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐶  ↾s  𝑆 )  ↾cat  𝐽 )  =  ( 𝐶  ↾cat  𝐽 ) ) |