| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rescabs2.c |  |-  ( ph -> C e. V ) | 
						
							| 2 |  | rescabs2.j |  |-  ( ph -> J Fn ( T X. T ) ) | 
						
							| 3 |  | rescabs2.s |  |-  ( ph -> S e. W ) | 
						
							| 4 |  | rescabs2.t |  |-  ( ph -> T C_ S ) | 
						
							| 5 |  | ressabs |  |-  ( ( S e. W /\ T C_ S ) -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) | 
						
							| 6 | 3 4 5 | syl2anc |  |-  ( ph -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ph -> ( ( ( C |`s S ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) | 
						
							| 8 |  | eqid |  |-  ( ( C |`s S ) |`cat J ) = ( ( C |`s S ) |`cat J ) | 
						
							| 9 |  | ovexd |  |-  ( ph -> ( C |`s S ) e. _V ) | 
						
							| 10 | 3 4 | ssexd |  |-  ( ph -> T e. _V ) | 
						
							| 11 | 8 9 10 2 | rescval2 |  |-  ( ph -> ( ( C |`s S ) |`cat J ) = ( ( ( C |`s S ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) | 
						
							| 12 |  | eqid |  |-  ( C |`cat J ) = ( C |`cat J ) | 
						
							| 13 | 12 1 10 2 | rescval2 |  |-  ( ph -> ( C |`cat J ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) | 
						
							| 14 | 7 11 13 | 3eqtr4d |  |-  ( ph -> ( ( C |`s S ) |`cat J ) = ( C |`cat J ) ) |