Metamath Proof Explorer


Theorem rescabs2

Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses rescabs2.c φCV
rescabs2.j φJFnT×T
rescabs2.s φSW
rescabs2.t φTS
Assertion rescabs2 φC𝑠ScatJ=CcatJ

Proof

Step Hyp Ref Expression
1 rescabs2.c φCV
2 rescabs2.j φJFnT×T
3 rescabs2.s φSW
4 rescabs2.t φTS
5 ressabs SWTSC𝑠S𝑠T=C𝑠T
6 3 4 5 syl2anc φC𝑠S𝑠T=C𝑠T
7 6 oveq1d φC𝑠S𝑠TsSetHomndxJ=C𝑠TsSetHomndxJ
8 eqid C𝑠ScatJ=C𝑠ScatJ
9 ovexd φC𝑠SV
10 3 4 ssexd φTV
11 8 9 10 2 rescval2 φC𝑠ScatJ=C𝑠S𝑠TsSetHomndxJ
12 eqid CcatJ=CcatJ
13 12 1 10 2 rescval2 φCcatJ=C𝑠TsSetHomndxJ
14 7 11 13 3eqtr4d φC𝑠ScatJ=CcatJ