Description: Inference removing two restricted quantifiers. Same as rexlimdvv , but with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexlim2d.x | ⊢ Ⅎ 𝑥 𝜑 | |
| rexlim2d.y | ⊢ Ⅎ 𝑦 𝜑 | ||
| rexlim2d.3 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) ) | ||
| Assertion | rexlim2d | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlim2d.x | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rexlim2d.y | ⊢ Ⅎ 𝑦 𝜑 | |
| 3 | rexlim2d.3 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑥 𝜒 | |
| 5 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 | |
| 6 | 2 5 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) |
| 7 | nfv | ⊢ Ⅎ 𝑦 𝜒 | |
| 8 | 3 | expdimp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ( 𝜓 → 𝜒 ) ) ) |
| 9 | 6 7 8 | rexlimd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜒 ) ) |
| 10 | 9 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜒 ) ) ) |
| 11 | 1 4 10 | rexlimd | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜒 ) ) |