Metamath Proof Explorer


Theorem rexlim2d

Description: Inference removing two restricted quantifiers. Same as rexlimdvv , but with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses rexlim2d.x xφ
rexlim2d.y yφ
rexlim2d.3 φxAyBψχ
Assertion rexlim2d φxAyBψχ

Proof

Step Hyp Ref Expression
1 rexlim2d.x xφ
2 rexlim2d.y yφ
3 rexlim2d.3 φxAyBψχ
4 nfv xχ
5 nfv yxA
6 2 5 nfan yφxA
7 nfv yχ
8 3 expdimp φxAyBψχ
9 6 7 8 rexlimd φxAyBψχ
10 9 ex φxAyBψχ
11 1 4 10 rexlimd φxAyBψχ