Metamath Proof Explorer


Theorem idlimc

Description: Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses idlimc.a φA
idlimc.f F=xAx
idlimc.x φX
Assertion idlimc φXFlimX

Proof

Step Hyp Ref Expression
1 idlimc.a φA
2 idlimc.f F=xAx
3 idlimc.x φX
4 simpr φw+w+
5 simpr φxAxA
6 2 fvmpt2 xAxAFx=x
7 5 5 6 syl2anc φxAFx=x
8 7 fvoveq1d φxAFxX=xX
9 8 adantr φxAxX<wFxX=xX
10 simpr φxAxX<wxX<w
11 9 10 eqbrtrd φxAxX<wFxX<w
12 11 adantrl φxAxXxX<wFxX<w
13 12 ex φxAxXxX<wFxX<w
14 13 adantlr φw+xAxXxX<wFxX<w
15 14 ralrimiva φw+xAxXxX<wFxX<w
16 nfcv _zx
17 nfcv _zX
18 16 17 nfne zxX
19 nfv zxX<w
20 18 19 nfan zxXxX<w
21 nfv zFxX<w
22 20 21 nfim zxXxX<wFxX<w
23 nfv xzXzX<w
24 nfcv _xabs
25 nfmpt1 _xxAx
26 2 25 nfcxfr _xF
27 nfcv _xz
28 26 27 nffv _xFz
29 nfcv _x
30 nfcv _xX
31 28 29 30 nfov _xFzX
32 24 31 nffv _xFzX
33 nfcv _x<
34 nfcv _xw
35 32 33 34 nfbr xFzX<w
36 23 35 nfim xzXzX<wFzX<w
37 neeq1 x=zxXzX
38 fvoveq1 x=zxX=zX
39 38 breq1d x=zxX<wzX<w
40 37 39 anbi12d x=zxXxX<wzXzX<w
41 40 imbrov2fvoveq x=zxXxX<wFxX<wzXzX<wFzX<w
42 22 36 41 cbvralw xAxXxX<wFxX<wzAzXzX<wFzX<w
43 15 42 sylib φw+zAzXzX<wFzX<w
44 brimralrspcev w+zAzXzX<wFzX<wy+zAzXzX<yFzX<w
45 4 43 44 syl2anc φw+y+zAzXzX<yFzX<w
46 45 ralrimiva φw+y+zAzXzX<yFzX<w
47 1 sselda φxAx
48 47 2 fmptd φF:A
49 48 1 3 ellimc3 φXFlimXXw+y+zAzXzX<yFzX<w
50 3 46 49 mpbir2and φXFlimX