| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlimc.a |
|- ( ph -> A C_ CC ) |
| 2 |
|
idlimc.f |
|- F = ( x e. A |-> x ) |
| 3 |
|
idlimc.x |
|- ( ph -> X e. CC ) |
| 4 |
|
simpr |
|- ( ( ph /\ w e. RR+ ) -> w e. RR+ ) |
| 5 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 6 |
2
|
fvmpt2 |
|- ( ( x e. A /\ x e. A ) -> ( F ` x ) = x ) |
| 7 |
5 5 6
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = x ) |
| 8 |
7
|
fvoveq1d |
|- ( ( ph /\ x e. A ) -> ( abs ` ( ( F ` x ) - X ) ) = ( abs ` ( x - X ) ) ) |
| 9 |
8
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) = ( abs ` ( x - X ) ) ) |
| 10 |
|
simpr |
|- ( ( ( ph /\ x e. A ) /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( x - X ) ) < w ) |
| 11 |
9 10
|
eqbrtrd |
|- ( ( ( ph /\ x e. A ) /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) |
| 12 |
11
|
adantrl |
|- ( ( ( ph /\ x e. A ) /\ ( x =/= X /\ ( abs ` ( x - X ) ) < w ) ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) |
| 13 |
12
|
ex |
|- ( ( ph /\ x e. A ) -> ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) ) |
| 14 |
13
|
adantlr |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. A ) -> ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) ) |
| 15 |
14
|
ralrimiva |
|- ( ( ph /\ w e. RR+ ) -> A. x e. A ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) ) |
| 16 |
|
nfcv |
|- F/_ z x |
| 17 |
|
nfcv |
|- F/_ z X |
| 18 |
16 17
|
nfne |
|- F/ z x =/= X |
| 19 |
|
nfv |
|- F/ z ( abs ` ( x - X ) ) < w |
| 20 |
18 19
|
nfan |
|- F/ z ( x =/= X /\ ( abs ` ( x - X ) ) < w ) |
| 21 |
|
nfv |
|- F/ z ( abs ` ( ( F ` x ) - X ) ) < w |
| 22 |
20 21
|
nfim |
|- F/ z ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) |
| 23 |
|
nfv |
|- F/ x ( z =/= X /\ ( abs ` ( z - X ) ) < w ) |
| 24 |
|
nfcv |
|- F/_ x abs |
| 25 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> x ) |
| 26 |
2 25
|
nfcxfr |
|- F/_ x F |
| 27 |
|
nfcv |
|- F/_ x z |
| 28 |
26 27
|
nffv |
|- F/_ x ( F ` z ) |
| 29 |
|
nfcv |
|- F/_ x - |
| 30 |
|
nfcv |
|- F/_ x X |
| 31 |
28 29 30
|
nfov |
|- F/_ x ( ( F ` z ) - X ) |
| 32 |
24 31
|
nffv |
|- F/_ x ( abs ` ( ( F ` z ) - X ) ) |
| 33 |
|
nfcv |
|- F/_ x < |
| 34 |
|
nfcv |
|- F/_ x w |
| 35 |
32 33 34
|
nfbr |
|- F/ x ( abs ` ( ( F ` z ) - X ) ) < w |
| 36 |
23 35
|
nfim |
|- F/ x ( ( z =/= X /\ ( abs ` ( z - X ) ) < w ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) |
| 37 |
|
neeq1 |
|- ( x = z -> ( x =/= X <-> z =/= X ) ) |
| 38 |
|
fvoveq1 |
|- ( x = z -> ( abs ` ( x - X ) ) = ( abs ` ( z - X ) ) ) |
| 39 |
38
|
breq1d |
|- ( x = z -> ( ( abs ` ( x - X ) ) < w <-> ( abs ` ( z - X ) ) < w ) ) |
| 40 |
37 39
|
anbi12d |
|- ( x = z -> ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) <-> ( z =/= X /\ ( abs ` ( z - X ) ) < w ) ) ) |
| 41 |
40
|
imbrov2fvoveq |
|- ( x = z -> ( ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) <-> ( ( z =/= X /\ ( abs ` ( z - X ) ) < w ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) ) |
| 42 |
22 36 41
|
cbvralw |
|- ( A. x e. A ( ( x =/= X /\ ( abs ` ( x - X ) ) < w ) -> ( abs ` ( ( F ` x ) - X ) ) < w ) <-> A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < w ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) |
| 43 |
15 42
|
sylib |
|- ( ( ph /\ w e. RR+ ) -> A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < w ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) |
| 44 |
|
brimralrspcev |
|- ( ( w e. RR+ /\ A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < w ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < y ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) |
| 45 |
4 43 44
|
syl2anc |
|- ( ( ph /\ w e. RR+ ) -> E. y e. RR+ A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < y ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) |
| 46 |
45
|
ralrimiva |
|- ( ph -> A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < y ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) |
| 47 |
1
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. CC ) |
| 48 |
47 2
|
fmptd |
|- ( ph -> F : A --> CC ) |
| 49 |
48 1 3
|
ellimc3 |
|- ( ph -> ( X e. ( F limCC X ) <-> ( X e. CC /\ A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= X /\ ( abs ` ( z - X ) ) < y ) -> ( abs ` ( ( F ` z ) - X ) ) < w ) ) ) ) |
| 50 |
3 46 49
|
mpbir2and |
|- ( ph -> X e. ( F limCC X ) ) |