| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngop.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 2 |
|
ralrnmpo.2 |
⊢ ( 𝑧 = 𝐶 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
2
|
notbid |
⊢ ( 𝑧 = 𝐶 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 4 |
1 3
|
ralrnmpo |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∀ 𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) ) |
| 5 |
4
|
notbid |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ¬ ∀ 𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) ) |
| 6 |
|
dfrex2 |
⊢ ( ∃ 𝑧 ∈ ran 𝐹 𝜑 ↔ ¬ ∀ 𝑧 ∈ ran 𝐹 ¬ 𝜑 ) |
| 7 |
|
dfrex2 |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) |
| 8 |
7
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) |
| 9 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) |
| 10 |
8 9
|
bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) |
| 11 |
5 6 10
|
3bitr4g |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∃ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |