Metamath Proof Explorer


Theorem rexrnmpo

Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses rngop.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
ralrnmpo.2 ( 𝑧 = 𝐶 → ( 𝜑𝜓 ) )
Assertion rexrnmpo ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉 → ( ∃ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∃ 𝑥𝐴𝑦𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 rngop.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 ralrnmpo.2 ( 𝑧 = 𝐶 → ( 𝜑𝜓 ) )
3 2 notbid ( 𝑧 = 𝐶 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
4 1 3 ralrnmpo ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉 → ( ∀ 𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐵 ¬ 𝜓 ) )
5 4 notbid ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉 → ( ¬ ∀ 𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ¬ ∀ 𝑥𝐴𝑦𝐵 ¬ 𝜓 ) )
6 dfrex2 ( ∃ 𝑧 ∈ ran 𝐹 𝜑 ↔ ¬ ∀ 𝑧 ∈ ran 𝐹 ¬ 𝜑 )
7 dfrex2 ( ∃ 𝑦𝐵 𝜓 ↔ ¬ ∀ 𝑦𝐵 ¬ 𝜓 )
8 7 rexbii ( ∃ 𝑥𝐴𝑦𝐵 𝜓 ↔ ∃ 𝑥𝐴 ¬ ∀ 𝑦𝐵 ¬ 𝜓 )
9 rexnal ( ∃ 𝑥𝐴 ¬ ∀ 𝑦𝐵 ¬ 𝜓 ↔ ¬ ∀ 𝑥𝐴𝑦𝐵 ¬ 𝜓 )
10 8 9 bitri ( ∃ 𝑥𝐴𝑦𝐵 𝜓 ↔ ¬ ∀ 𝑥𝐴𝑦𝐵 ¬ 𝜓 )
11 5 6 10 3bitr4g ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉 → ( ∃ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∃ 𝑥𝐴𝑦𝐵 𝜓 ) )